Recent observational results from space missions, such as the Solar Dynamics Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), Kepler and others that were launched in the past 10 years, as well as from the new large solar and stellar telescopes, such as GREGOR and ALMA, and advanced instrumentation, have convincingly demonstrated that the progress in our understanding of how magnetic fields are generated, emerge from the interior, organize in active regions, and cause powerful eruptions can be achieved only by developing a unified approach and studying relationships between solar and stellar magnetism. Developing a synergy of solar and stellar astronomy is essential in solving grand-challenge problems of the primary mechanisms of stellar magnetic activity and its effects on star-planet relations.
An important key issue is that the same or similar phenomena occur on the Sun and other stars under different conditions (different age, metallicity, rotation rate etc) and studying these similarities and differences will help to uncover the underlying physical mechanisms, their evolution in time and impacts. Specifically, the proposed program includes discussions of new emerging topics that are of interest to both solar and stellar astronomers, such as magnetic field diagnostics of the chromosphere and corona using observations of chromospheric lines and initial data from ALMA (which became available earlier this year), detection of stellar magnetospheres, and detailed mapping of the magnetic fields on the surface of stars. Previously, such mapping was possible only for the Sun. Therefore, it is very interesting and important to compare the solar and stellar results, and also discuss how the surface magnetism structure and evolution are related to the generation of magnetic in the solar and stellar interiors.
Hosted by AIP and the New Jersey Institute of Technology, Copiapo, Chile