Bachelor Thesis

Enhancing Data Workflows and Reproducibility with

LLM Agents

How effective are LLMs with RAG and Agents in improving data analysis

pipelines in terms of effectiveness and accuracy in astrophysics?

Submission date:
Author:

Cadastral number:
First Reviewer:

Second Reviewer:

))
HOST

Hochschule Stralsund

University of
Applied Sciences

February 3, 2025

Enrico Tom Leonhard Straufl
19103

Prof. Dr. rer. nat. André Griining

Dr. rer. nat. Arman Khalatyan

/

AIP

Zusammenfassung / Abstract

Diese Arbeit stellt einen Machbarkeitsnachweis zur Nutzung von LLMs unter Verwendung von modernen Tech-
nologien dar, um die automatische Generierung von Workflows fiir die Plattform fiir Datenanalyse REANA zu
realisieren. Das Thema der Arbeit lautet ,,Enhancing Data Workflows and Reproducibility with LLM Agents*,
wobei die Frage ,,How effective are LLMs with RAG and Agents in improving data analysis pipelines in terms
of effectiveness and accuracy in astrophysics?“ beantwortet werden soll. Die Machbarkeit eines solchen Systems
anhand einer Prototypimplementierung soll iiberpriift werden. Diese Arbeit stellt einen solchen Prototypen vor
und zeigt die Probleme auf, welche noch gelést werden miissen, um ein produktives System aufzubauen. Die
Arbeit enthélt einen Einblick sowohl in die theoretischen Grundlagen, auf welchen die Implementierung beruht,

als auch in die praktische Nutzung des Prototypens.

Bitte beachten Sie, dass diese Arbeit in englischer Sprache verfasst ist. Lediglich diese kurze Zusammenfassung

wurde in deutscher Sprache verfasst, da dies von der Hochschule Stralsund vorausgesetzt wurde.

This thesis presents a proof of concept for using LLMs with modern technologies to realise the automatic gener-
ation of workflows for the data analysis platform REANA. The topic of the thesis is ” Enhancing Data Workflows
and Reproducibility with LLM Agents”, where the question ”How effective are LLMs with RAG and Agents in
improving data analysis pipelines in terms of effectiveness and accuracy in astrophysics?” should be answered.
The feasibility of such a system is to be tested by means of a prototype implementation. This thesis presents
such a prototype and shows the problems that still need to be solved to build a productive system. The work
contains an insight into both the theoretical principles on which the implementation is based and the practical

use of the prototype.

This thesis will be written in English. Only the first summary has been written in German since the Uni-

versity of Applied Sciences ”Hochschule Stralsund” presupposes this.

Contents

Abstract

1 Introduction

2 Theory

2.1 Technical fundamentals L
2.1.1 Large Language Models (LLMS) i
2.1.2 Retrieval-Augmented Generation (RAG) o
2.1.3 Agents and Agent Systems

2.2 A Reproducible Analysis Platform REANA o

2.3 Machine Learning (ML) Libraries, Frameworks and Platforms
2.3.1 Ollama e
2.3.2 CrewAl . . o e
2.3.3 LangChain L e
2.3.4 Llamalndex oL e
2.3.5 FlowiseAL e
2.3.6 LangFlow
2.3.7 Open WebUI 0 o e
2.3.8 Qdrant L e

3 Practical

3.1 Hardware and Software Environment L
3.1.1 Hardware e e e e e e
3.1.2 Software e e e e e

3.2 Infrastructure Setup L

3.3 Setup and Usage oL e e
3.3.1 Ollama o e
3.3.2 FlowiseAL e
3.3.3 CrewAl and LangChain
3.3.4 LangFlow o o e
3.3.5 Open WebUI o

12
12
12
13
14
17
18
18
18
18
18
18
18
19
19

3.3.6 Qdranto L e
3.4 Choice of Tools o o
3.4.1 FlowiseAl vs. Langflow
3.4.2 User Interface e e e
3.4.3 Vector Store e e
3.4.4 Docker and Docker Compose
3.5 Development Environment and Challenges 0L
3.5.1 Docker to Docker Compose e
3.5.2 Challenges
3.6 Model Evaluation e
3.6.1 Configuration Details L
3.6.2 Model Evaluation Overall
3.6.3 Model Evaluation by Model L
3.6.4 Model Evaluation by Model in Detail oL
3.6.5 Validation e e e e
3.7 First Steps with FlowiseAI and Open WebUT
3.7.1 Python Runner with Matplotlib
3.7.2 Implementation to Generate and Run REANA Workflows

4 Final Setup
4.1 FlowiseAI Workflows e
4.1.1 Output Standard Format
4.1.2 REANA Generation Workflow
4.1.3 Open WebUI Endpoint Workflow
4.2 Open WebUI Pipeline 0 e
4.3 Custom Tools e
4.3.1 General Structure L e
4.3.2 Tools . . . o e e e

5 Evaluation of the Setups
5.1 Response Evaluation L

5.2 Time Consumption e e e e

6 Conclusions
6.0.1 Benefits and Limitations e e e e e e e e e
6.0.2 Next Steps o e

7 Acknowledgments

A Model evaluation configurations / question catalogue

A.1 Question Catalogue L e e

48
49
49
49
50
51
53
93
o4

58
58
99

60
60
60

62

A2 Configurations e e e 1I

B Model evaluation v
B.1 Scripts for Model Evaluation Without RAG v
B.2 Analyses VII
B.3 Evaluation Table XII
B.4 Scripts for Model Evaluation With RAG XV
B.5 Analyses with RAG L e XIX
B.6 Evaluation Table XXIV
B.7 Final Workflow evaluation XXVI
B.8 Analyses (final) e XXIX
B.9 Evaluation Table e XXXII
B.10 Evaluation Tables o . e XXXII

C Docker XXXIV
C.1 Docker compose files XXXIV

D First steps XXXVIII
D.1 Python Runner with Matplotlib XXXVIII
D.2 Implementation to Generate and Run REANA Workflows XLI

E Final setup XLV
E.1 Chain of toughs e XLV
E.2 FlowiseAl workflows o o L
E.3 Open WebUI Pipeline o . o o LIV
E.4 Time consumption L L L e e e e e e LVII
E.5 Usage of Prototype Examples e LXII

E.5.1 Generating an workflow L oL o LXII
E.5.2 Adjust an workflow L LXIII
E.5.3 Upload an workflow to REANA LXIV
E.5.4 Creating an GitLab repository for an workflow LXV
E.5.5 General questions about REANA LXVI
E.5.6 Harmful or wrong use of the system L. LXVI
F Evaluation of the Setups LXVII

G Declaration of independence (Eigenstdndigkeitserklarung) / List of aids (Hilfsmittel) LXVIII

List of Figures

Introduction

9

1.0.1 Scientists or press release personal often work with software and data to create illustrations.[AKP24] 10

1.0.2 Initial design for the LLM system uses agents pool for the prototypical implementation.[AKG24] .

Theory
2.1.1 Simplified design of a Retrieval-Augmented Generation (RAG) process.
2.1.2 A multi-agent system with a supervisor agent.[FLMA24]
2.1.3 A multi-agent sequential system.[FLSA24]
2.2.1 A REANA workflow configuration file which is used to create a REANA workflow.[P4NR24] . . .

Practical
3.2.1 Infrastructure setup for the protype deployment.
3.6.1 Implementation of a FlowiseAl workflow to upload files to Qdrant via API.
3.6.2 Implementation of a FlowiseAI workflow for a RAG.
3.6.3 Comparison of the model performance summarized by rating to illustrate the impact of RAG. .
3.6.4 Model performance for LLM models without RAG.
3.6.5 Model performance for LLM models with RAG.
3.6.6 Model performance for LLM models without RAG by task categories.
3.6.7 Model performance for LLM models with RAG by task categories.
3.7.1 A FlowiseAl workflow to generate Python scripts incl. the detection of Matplotlib.
3.7.2 Open WebUI response to run a Python script without Matplotlib.
3.7.3 Open WebUI response to run a Python script with Matplotlib.
3.7.4 A FlowiseAl workflow to generate a REANA workflow, Part Tof 3
3.7.5 A FlowiseAl workflow to generate a REANA workflow, Part 20f 3
3.7.6 A FlowiseAl workflow to generate a REANA workflow, Part 3of 3
3.7.7 Open WebUTI response to create a REANA workflow and start a job on the REANA cluster. . .
3.7.8 The REANA workflow is executed successfully.,
3.7.9 A sinus graph is a result of a REANA job execution. The REANA workflow was generated via
the OpenWebUI web interface and successfully executed on the REANA platform.

11

12
14
15
16
17

4.0.1 Sequential processing of the request in a FlowiseAl workflow. 48

4.1.1 A FlowiseAl workflow to generate REANA workflow configurations. 50

4.1.2 A FlowiseAl workflow provides an endpoint for the OpenWebUI pipeline container incl. the
executed components. L. 51

4.3.1 Docker compose yaml file of tool container, which exposes the internal structure to understand

the parameters, which are necessary to guarantee the functionality of the container. 53
4.3.2 Tool container Dockerfile. L 54
4.3.3 "requirements.txt” file contains the Python library dependencies. 54

5.1.1 Model performance diagram for Ollama direct calls with the ”qwen2.5-coder:32b-instruct-q8 0”

LLM model vs. final prototype API calls to the final prototype. 58
Appendix I
A.2.1 Catalogue of questions and configurations for model evaluation III
B.1.1 Script to make request directly to Ollama L \%
B.1.2 Script to evaluate direct Ollama requests VI
B.1.3 Script to generate evaluation markdown table of direct Ollama calls VII
B.2.1 Script for analysation of direct Ollama calls XII
B.4.1 Script to vectorize and upload yaml files to the vector store XVI
B.4.2 Script to make request to FlowiseAl RAG implementation XVII
B.4.3 Script to evaluate requests to FlowiseAl RAG implementation XVIII
B.4.4 Script to generate evaluation markdown table of FlowiseAl RAG implementation calls XIX
B.5.1 Script for analysation of calls to FlowiseAl RAG implementation XXIV
B.7.1 Request script oL e XXVII
B.7.2 Evaluation script L e XXVIII
B.7.3 Table generation scripto XXIX
B.8.1 Analysation script L XXXI
C.1.1 Postgres o o e XXXIV
C.1.2 Open WebUTL oL e XXXV
C.1.3 FlowiseAL XXXVI
C.l4 Qdrant e XXXVII
C.1.5 Own Tool Container - aiptools XXXVII
D.1.1 Open WebUI pipeline e e XL
D.2.1 Open WebUI pipeline o e XLIV
E.1.1 Chain of toughs 1 o XLV
E.1.2 Chain of toughs 2 oL XLVI

E.1.3 Chain of toughs 3 o e XLVII

E.1.4 Chain of toughs 4 e XLVIII

E.2.1 REANA generation FlowiseAl workflow L
E.2.2 Open WebUI endpoint FlowiseAl workflow LII
E.3.1 OpenWebUI pipeline of the final prototype LVI
E.4.1 Time consumption script e e e e LXI
E.5.1 Example - generating an REANA workflow via Open WebUI web interface LXII
E.5.2 Example - adjust an REANA workflow via Open WebUI web interface LXIII
E.5.3 Example - upload an workflow to REANA via Open WebUI web interface LXIV
E.5.4 Example - creating an GitLab repository with the REANA workflow via Open WebUI web
interface L L e LXV
E.5.5 Example - ask an general question about REANA via Open WebUI web interface LXVI
E.5.6 Example - identification of harmful user input via Open WebUI web interface LXVI

List of Tables

Practical 20
5.2.1 Time consumption compariSon o ot e e e e 59
Appendix I
A.1.1 Question catalogue used for the model evaluation II

B.10.1 Comparison of the model performance summarized by rating to illustrate the impact of RAGXXII
B.10.2 Model performance for LLM models without RAG. XXXII
B.10.3 Model performance for LLM models with RAG. XXXIII

F.0.1 Model performance diagram for Ollama direct calls with the ”qwen2.5-coder:32b-instruct-q8 0”
LLM model vs. final prototype API calls to the final prototype. LXVII

Chapter 1

Introduction

In modern astrophysics, petabytes of data must be processed and analyzed to create figures and publish ar-
ticles and press releases. The Astrophysical Institute Potsdam (AIP) uses REANA (definition in Section 2.2)
to perform large calculations and generate illustrations from vast amounts of observational or simulated data,
utilizing Kubernetes clusters. Users can create, manage, and execute workflows through a command-line client.
However, the platform’s users have diverse IT backgrounds. While many scientists possess I'T-related knowl-

edge, they may not be familiar with REANA, and some users have limited IT experience.

The ability of Large Language Models (definition in Section 2.1.1) to process, structure, and analyze large
data sets can significantly enhance research efficiency and reproducibility. This thesis explores how Retrieval-
Augmented Generation (definition in Section 2.1.2) and autonomous agent-based approaches (definition in
Section 2.1.3) can improve data workflows, focusing on REANA. REANA is a reproducible analysis platform

that enables scientists to run containerized data analysis pipelines on remote compute clouds.

A typical scenario is shown in Figure 1.0.1. A scientist or public relations person needs to generate an il-
lustration for a press release. They use various data sources and run code on the data. Often, the person
preparing the press release has not written the scientific article, and the code used for data analysis and fig-
ure production is outdated. Although REANA could support this task, it presents a steep learning curve for

first-time users.

Input from paper Let’s create an appealing
Transferring spectroscopic stellar labels to press re|ease image.
217 million Gaia DR3 XP stars with SHBoost,
by Khalatyan, Anders, et al. (2024), aa51427-
24,arXiv:2407.06963

i
C OC |

User input:
Show an example of REANA
pipeline for Starhorse
datasets from 2024, CMD
data is extracted and plotted
interactively

Results:
* Source code
* REANA workflow
¢ Data
* Plots

Figure 1.0.1: Scientists or press release personal often work with software and data to create illustrations.[AKP24]

In this bachelor project, the new developments in the field of LLMs are used, as well as RAG and Agents,
to provide an easier handling of REANA workflows. The study aims to assess the effectiveness and accuracy
of LLM-driven workflow automation within astrophysical data analysis. By implementing a prototype system
that integrates modern machine learning frameworks, such as FlowiseAl, LangChain, and Qdrant, the thesis
investigates the potential of these technologies in automating the generation and validation of REANA work-
flows. Furthermore, challenges such as infrastructure setup, model evaluation, and workflow validation are
examined to determine the feasibility of a fully automated system. Based on that the question ”How effective
are LLMs with RAG and Agents in improving data analysis pipelines in terms of effectiveness and accuracy in
astrophysics?” should be answered. Overall, the thesis should serve one overarching theme ”Enhancing Data
Workflows and Reproducibility with LLM Agents”.

To solve the thesis question, the developed prototype should be able to automate the generation of REANA
workflows, which are defined by yaml files, based on a user prompt. Figure 1.0.2 shows a possible solution for

that is an agent system, that produces the results with help of a supervisor or planner and multiple workers.

10

Research Assistant LLM

/ LLM Agents

_l V4 [Knowledge base:] [Knowledge base:]
- - (ﬁ , Specific rules Source Code
User input: p . \; . 0
Show an example of REANA y N Pool of Agents |m|
pipeline for Starhorse e -
datasets from 2024, CMD i ’ X
data is extracted and plotted “ Planner “
interactively N _
Knowledge base: Knowledge base:

Data query Validations

. ‘.‘ | ’“l Testers o 0
XU | el | ez &
e N

(F I K | \ Researcher Executor Testers
\ | I .
- 4 N Knowledge base: Knowledge base:
Papers Infrastructure
0

Results: Validator L _
* Source code N { Iml
* REANA workflow) \ . : :
* Data .
" Plow \ Researcher Executor

Figure 1.0.2: Initial design for the LLM system uses agents pool for the prototypical implementation.[AKG24]

The main objective of this prototype is to demonstrate through the unique integration of RAG and Agents in
connection with REANA how large the impact of this new technologies is related to the scientific field of astro-
physics. To evaluate this different tests will be performed. These tests include an evaluation, which is based on
precise specifications of responses of several implementations related to a predefined question catalogue, which
includes the generation of whole REANA workflows, but also contains theoretical questions. Through a combi-
nation of theoretical exploration and practical implementation, this work contributes to the ongoing discourse
on Al-assisted scientific computing. It not only highlights the strengths of current LLM-driven automation
techniques but also identifies key areas that require further development to achieve a robust and scalable solu-

tion.

The appendix highlights selected features of the used code base and is referenced in the thesis. The whole code
base is available at a public GitHub repository'. Notice that this repository has no commit history, but the

examiners of this thesis are able to access the private repository with the full commit history.

Thttps://github.com/etlstrauss/bachelor-thesis-public

11

https://github.com/etlstrauss/bachelor-thesis-public

Chapter 2

Theory

This chapter provides the explanation of natural languages processing basics and a description of the REANA
data analysis platform. Furthermore, it contains references to libraries and frameworks used for the implemen-

tation of the prototype.

2.1 Technical fundamentals

To enable the reader to follow the developments in this thesis this section provides some information about

general technical fundamentals.

2.1.1 Large Language Models (LLMs)

Large Language Models (LLMs) are systems, which are able to understand and generate a natural language.
The basis for LLMs are machine learning techniques, which are used to train these models with a massive
amount of data.[WALMcs24]

The development of LLMs began with the understanding of NLP (natural language processing) in the 1950s.
Till the end of the last century, NLP moved from a clear logical approach for analysis of the already existing
linguistic data, to the development of first systems which are able to predict words on the basis of similar
data. The final breakthrough to the present state-of-the-art technology was the introduction of Neural Net-
works (NN) and Transformer Architecture, which are the basis of today’s Generative Pre-Trained Transformers
(GPTs).[WALMcs24| In the curse of this thesis LLMs will be also referred as models.

Quantization

Based on the hardware limitations described in Section 3.1.1 it was only possible to use small models locally.
Another way is the quantization of LLMs, because a quantized LLM had a reduced resource consumption
compared to a model that is not quantized. Quantization is the process of transforming the weights of an

LLM. The weights of an LLM are values, which are describing the connection within the Neural Network of

12

it. Normally, LLMs will be developed with fpl6 or fp32 weight sizes. To reduce the necessary resources to
run a model, the weights will be transformed to a smaller bit size. This will cause precision loss.[EgaAtE124,
LinAtE124]

To show the impact of quantization of a model in terms of its size, let’s look onto the ”qwen-coder2.5:32b-
instruct”, open weight model provided by Alibaba Cloud[HQw25]. The size of this model in the fp16 format is
66 GB, according to the Ollama (definition in Section 2.3.1) model registry. The Ollama model registry is a
platform where the files for the LLLMs, which are runnable with Ollama, are accessible. The same model with
an quantization of ¢8 (or int8) is 35 GB.[0QC24] The precisions loss, that comes with this, differs with regard
to the field of application.

GGML and GGUF Formats

The main problem in the beginning of LLMs development was that it was complicated to share models and
make them runnable on generic hardware. One example for that is a gaming PC with a build in Nvidia graphic
card. Therefore, Georgi Gerganov invented the GGML file format. GGML is a tensor library which guarantees
high performance, as the tensors will be stored in a specific way, but the configuration was very complex and
had to be done "manually”, which took a lot of time.[IGGUF24, HFGG24]

The follow-up GGUF format fixes some of GGMLs limitations, for example compatibility issues, and makes it

possible to add new features to an existing model and to use older models.[IGGUF24]

Most models in the Ollama registry, which will be used in this thesis, are quantized based on GGML. Ad-
ditionally, models from Hugging Face[HF25] (a platform that provides numerous easily accessible LLMs for local
deployment) that are compatible with Ollama are quantized using GGUF. Therefore, we will focus only on
these methods.

2.1.2 Retrieval-Augmented Generation (RAG)

The Retrieval-Augmented Generation (RAG) paradigm can be used to reduce “hallucinations”! of LLMs, which
can cause misleading results, and to ”extend” the (mostly not changeable) knowledge base of pre-trained LLMs.
Overall, the idea is to get more information of a specific topic and give this as context to an LLM. There
are different "stages” of RAG, but to explain the concept of RAG it is enough to take a look at a "naive
RAG”.[GaoEtA124]

The process of this particular RAG implementation is very simple. A set of documents about a specific topic
will be vectorized with a special model (at this point embedding models will be used. They are very small
but especially designed to vectorize data), the vectors of this content and the content itself will be loaded into
a vector store. This part of the process is named ”indexing”. To use these information, a user query is be
vectorized, too. Now, with both sides (vectors of the query and vectors in the store) a similarity search can be

made. After the search in the vector store, the best matchings, based on the search algorithm, will be routed to

1Hint from the author: The wording “hallucinations” is probably misleading, because LLMs are not creative or on an direct
way “intelligent”. That means that “hallucinations” are more like a misinterpretation by the models, for example based on poor
training data quality.[IHal25]

13

the LLM as context for the user prompt. After this ”retrieval” the LLM generates output based on the context
and the user query.[GaoEtA124]

This process is important, because the context the LLM can use is probably very limited by hardware resources.
That is why only the top "k” entries of the vector store should be used as context for the user query. Top "k”
is a specific term of this scientific field. It describes the first ”k” entries which are found within a vector store.

Figure 2.1.1 below illustrates this process.

documents / ’
‘ informations embedding model —— vector store

|

v

Output LLM <« similarity search

‘ User guery }—} embedding mode|

retival

indexing

Figure 2.1.1: Simplified design of a Retrieval-Augmented Generation (RAG) process.

2.1.3 Agents and Agent Systems

This subsection describes the concept of agents and different agent systems, which will be differentiate into 3

types.

Simple Agent

An agent is nothing else then a smart system, which can use tools or iterate itself based on a LLM. Agents
can have a memory to store older conversations. Because of this the agent can ”learn” from the user or other
agents. This functionalities increase the knowledge base, enables the ability to interact with other software and
to bypass the ”cutting edge” of a model without fine-tune it.[IWAA24] The ”cutting edge” describes the point

in time on which the last data, to train the model, was collected. Normally this is a fixed date.

14

Multi Agents

An multi agent system, illustrated in Figure 2.1.2, is an expansion of the agent concept. There are different
approaches to implement such systems. One of the easiest ways to do this is to create a system which contains
a supervisor and several workers. The supervisor and the workers are agents. Every worker can be specialized
for a task or topic, uses different tools and probably separate memories. The supervisor must handle the
conversation or cooperation between the workers and decides when a user’s task is completed. Any single agent
can use a different model in the background, regarding different topics and tasks. Furthermore, the process of

the conversation between the agents is not sequential, but an iterative process.[FLMA24]

Worker 3

Figure 2.1.2: A multi-agent system with a supervisor agent.[FLMA24]

Sequential Agents

Sequential agent systems differ only in one point compared to multi agent systems. They are not able to iterative
on their own volition. The goal of this systems is to create a clear workflow. The agents can use tools, memory
and different models, but they are built sequentially. Therefore, an agent or component is only able to run one
time. The only exception is, that a repetition of the workflow is possible, when the creator of the workflow uses
a loop directly in the workflow.[FLSA24] To get a better understanding of this, take a look at the visualisation
in Figure 2.1.3. As example imagine an agent system that should iterate itself to improve the results, but it
was noticed that the resource consumption was too high. In this case it would be reasonable to create a system
of sequential agents that runs predefined improvements instead of non-traceable once, like in an multi agent

system.

15

agent_tool

1
I

e T

Figure 2.1.3: A multi-agent sequential system.[FLSA24]

16

2.2 A Reproducible Analysis Platform REANA

REANA is a reproducible analysis platform allowing researchers to run containerised data analyses on remote

compute clouds.[GHR24]

For this thesis the REANA platform instance at AIP was used as it is with no modifications. For this thesis,
only the definition of a REANA workflow is of importance. The definition of a workflow is done by a yaml file.
This yaml file contains different REANA specific parameters, like input files, steps which will be executed and
output files. Figure 2.2.1 displays an example "reana.yaml” file. This example is provided in a tutorial series
by PUNCH4NFDI? written at the AIP. The workflow runs a basic hello world script.

inputs:
files:
- helloworld.py
workflow:
type: serial
specification:
steps:

- environment: 'docker.io/library/python:3.10-bookworm'
kubernetes_memory_limit: '100Mi'
kubernetes_job_timeout: 60 # seconds
commands :

- python helloworld.py

Figure 2.2.1: A REANA workflow configuration file which is used to create a REANA workflow.[P4NR24]
Furthermore, REANA provides a web interface and a command line client. The client itself is a Python library,

which can be directly used. Also, the library ”reana-commons” will be used in this thesis.

2PUNCH4NFDI is the German Particles, Universe, NuClei and Hadrons consortium for National Research Data Infrastructure
(NFDI), https://punch4nfdi.de.

17

https://punch4nfdi.de

2.3 Machine Learning (ML) Libraries, Frameworks and Platforms

This section provides references to state-of-the-art Machine Learning (ML) libraries, frameworks and platforms

that are relevant for this thesis. Notice that not all components were used for the final prototype.

2.3.1 Ollama

Ollama can be understand as a simple usable platform to run LLMs locally with a limited selection of models.
The preselection of models and their configurations make the usage quite easy without a deep understanding of

the configurations.[011a25, MEOL24] The main disadvantage is, that the selection of models is limited.

2.3.2 CrewAl

CrewAl describe itself as ” cutting-edge framework for orchestrating role-playing, autonomous Al agents.” [CDS24].
The Python based Framework is used to orchestrate and run different Agents. The agents collaborate au-
tonomous as a ”"crew”. The main components are the agents, their tasks and tools. The agents can use defined
tools to solve the specific tasks.[CIBM24]

2.3.3 LangChain

LangChain is a framework, which contains different libraries to develop, monitor and deploy whole applications.
The libraries which can be used are langchain-core, langchain-community, langchain, LangGraph, LangServe
and LangSmith.[LCI24] A detailed description of provided libraries is available at[L1].

2.3.4 Llamalndex

”Llamalndex is a framework for building context-augmented generative Al applications with LLMs including
agents and workflows.” [LII2024] This Framework contain some important components to build RAG systems.
The components are data connectors, data indexes and engines. With the predefined agents and evaluation

integrations it should be possible to monitor and build workflows.[LI12024]

2.3.5 FlowiseAl

FlowiseAI and LangFlow are so called low /zero code tools. When FlowiseAl is started, it provides a web interface
that enables the simple creation of workflows via the click and drop principle. [FI24] FlowiseAl intergrades
base utilities[FIU24], but also LangChain[FILC24] and Llamalndex[FILI24] are (indirectly) integrated.

2.3.6 LangFlow

LangFlow is a visual framework that can be used to build agent and RAG systems. It is open source and runs

Python. The simple and user-friendly structure makes it perfect for prototyping.[LFW24]

18

2.3.7 Open WebUI

Open WebUI is a complex but user-friendly interface to interact with different ML models and different runners
(like OpenAl, Claude and Ollama). It brings a useful user management and stores the data locally on the
machine. This feature can play an important role in the future due to data protection regulations. The

interface itself is accessible as webpage and will be run within a Docker container.[0H24]

2.3.8 Qdrant

Qdrant is a vector store, which is capable to run similarity searches within the vectorized data and to store this
kind of data. Qdrant uses different distance metrics. The data itself will be vectorized by a separate embedding
model and is forwarded over an API to the vector store. Qdrant can be run in a Docker container, which also
provides a web interface.[QWiQ24]

The one larger disadvantage of this vector store is that every collection has a fixed vector dimension size. If a

new embedding model needs to be used, it is very likely that all data must be vectorized again.

19

Chapter 3

Practical

This chapter should provide an overview about the development process. To provide a look onto the development
process the development environment will be explained and the first setup of the already introduced tools is
provided. Also, this chapter will explain which tools will be used, and why. Furthermore, an overview of large
changes in the environment and challenges will be pointed out. At the end of this chapter an evaluation of

different models was done to find the best fitting model and some examples for the used tools were given.

3.1 Hardware and Software Environment

This section describes the hardware and software environment. The environment defines the possibilities and

limitations of the prototype.

3.1.1 Hardware

The project is developed on a separate virtual machine (VM), which is connected to a dedicated Nvidia Quadro
RTX 8000. This graphic card has a GPU memory of 48 GB GDDR6, a bandwidth of 672 GB/s and has a Single-
Precision Performance of 16.3 TFLOPS or a Tensor Performance of 130.5 TFLOPS. To get more information
about it look at the data sheet.[L3] The Dual-CPU is a 2x24 core Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz.
The storage for the OS is located on a simple 107GB SSD. The models will be stored on 2 separate 480GB
SSDs.

3.1.2 Software

The VM has Debian 12 as operating system. The software packages include Nvidia drivers, Ollama, Docker

and Docker compose.

20

3.2 Infrastructure Setup

Figure 3.2.1 represents the final infrastructure. The llm001 VM hosts different services to build a functional and
(nearly) productive ready system. As mentioned above, Ollama is installed in the OS system level. Ollama uses
two separate SSDs to store the models and directly accesses the graphic card. Further software components are
provided via several Docker containers. The core component is FlowiseAl. FlowiseAl is connected to Ollama
to use LLMs. Following chapters will describe in detail how FlowiseAl is connected to Qdrant and PostgreSQL
to provide RAGs. A simple RAG implementation which using Qdrant and PostgreSQL is explained in Section
3.6.1. As user interface Open WebUI was chosen. To call the API of FlowiseAl via Open WebUI, the setup of

an Open WebUI pipeline container was mandatory. Open WebUI can also be connected directly to Ollama.

User
[Im001
docker - containers
seperate model - . S— .
T open-webui +— ipelines <—{custom-tools
ollama < >» flowise
T ry
Quadro RTX
8000 drant ostgres
[] Runner [services [] Host
[l Container runtime [J Hardware

Figure 3.2.1: Infrastructure setup for the protype deployment.

21

3.3 Setup and Usage

This section explains the first setup and the tools used by the first setup. This do not match the final system,
but it shows the approach to implement initial ideas and serves the purpose to get a basis to select tools for the

prototype, this will be explained in Section 3.4 in more detail.

3.3.1 Ollama

As described in previous section, Ollama was already pre-installed on the VM. Regarding the central role of
Ollama, here the installation instructions for Debian 12 which might differ for different Linux distribution. This

applies throughout the thesis.

curl -fsSL https://ollama.com/install.sh | sh

This command installs or upgrades the Ollama setup. To check if the service is running use ”systemctl
status ollama”. To run a model use "ollama run model:tag”. Following reference contains a list of available
models[L2].

3.3.2 FlowiseAl

To use FlowiseAl clone the GitHub repository to a local machine and build an image from the Dockerfile[FGS24].
Although there is the possibility to install FlowiseAl over npm, but the decision to use Docker was made, because

it is easier to reproduce results and that many deprecation warnings occurred during the npm installation.

git clone https://github.com/FlowiseAI/Flowise.git

docker build --no-cache -t flowise .

Start FlowiseAI as Docker container[FGS24]. The web interface of FlowiseAI can be accessed via browser with
"http://localhost:3000” URL.

docker run -d --name flowise -p 3000:3000 flowise

docker ps

3.3.3 CrewAl and LangChain

The setup of CrewAl and LangChain is much easier. The only things which are necessary is a Python environ-
ment and the pip installations of the 2 tools[LCQ24, CGS24, LFGS24].

22

python3 -m venv <path-to-venv>
pip install langchain
pip install crewai

pip install 'crewail[tools]'

3.3.4 LangFlow

In order to install LangFlow we activate an Python virtual environment and running following commands:[LFGS24].

pip install langflow

python -m langflow run

The LangFlow web interface will be accessible via a browser. After the startup LangFlow should open a new tab

by itself. When this does not happen, please follow the steps in the terminal, where you had started LangFlow.

3.3.5 Open WebUI

As there are no specifications for the initial setup, Open WebUI is started by the default ”docker run” command
from the Open WebUI documentation.[0GS24]

This command will start the container and if not existent on the host will pull the Open WebUI image.

Here a short explanation of the ”"docker run” parameters. The port forwarding is specified. The default
configuration expects to use all GPUs of the host. Notice that the default configuration can possibly affect the
efficiency of some other services on the specific host like Ollama. The data volume on host of Open WebUI is

specified as well, to preserve data if a container crashes or if a container is migrated to a different host.

docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v
< open-webui:/app/backend/data --name open-webui --restart always

— ghcr.io/open-webui/open-webui:cuda

Pipelines

In addition to the setup of Open WebUI, a pipeline container needs to be setup. Open WebUI connects to the
container to run user specified pipelines, for example to communicate with the FlowiseAI APIs. This connection

has to be set via the Open WebUI web interface in the admin panel under the entry ”connections”.[0P24]

docker run -d -p 9099:9099 \
--add-host=host.docker.internal:host-gateway \
-v /root/docker-data/pipelines-openwebui:/app/pipelines \

--name pipelines \

23

--restart always \
-e REANA_SERVER_URL=https://reana-p4n.aip.de \

ghcr.io/open-webui/pipelines:main

3.3.6 Qdrant

The Qdrant vector store is pulled as the latest Qdrant image and mounted the internal storage of Qdrant onto a
specific directory on the host machine. The Qdrant web interface is accessible at "http://localhost-or-IP:6333/dashboarc
The APT endpoint to load data into the store is located at "http://localhost-or-IP:6333”.[QLQ24]

docker run -p 6333:6333 -p 6334:6334 -v $(pwd)/qdrant_storage:/qdrant/storage:z

- qdrant/qdrant

24

3.4 Choice of Tools

Previous section gave an overview of the state-of-the-art methods and tools. Since not all tools should be used,

this section discusses the reasoning behind the tool choices for the practical implementation of the prototype.

3.4.1 FlowiseAl vs. Langflow

First, FlowiseAl rebuilds the prototypes with usage of LangChain in the background. Second, it is also capable
to load the documents into a vector store, which is a mandatory requirement. For this reason FlowiseAl provides
a specific integration in the web interface or an own workflow can implemented. This makes the testing phase
simple. Therefore, Qdrant was used in a Docker container setup.

Furthermore, FlowiseAI provides manageable APIs for the workflows. This way, the interactive web interface
can be bypassed. The chatbots can connect to a website, but they also can connect to Open WebUI. This also
creates an advantage to check outputs and run tests.

The missing user management is currently a main disadvantage of FlowiseAl, but there are some open GitHub
requests. This project does not require this feature, but it could be important in the future for the productive
setup.

Due to the predominant advantages FlowiseAl was chosen as a main tool for this work.

3.4.2 User Interface

Open WebUI provides an implementation for the Docker and Docker compose setup in their GitHub repository.
Also, the connectable pipeline container is an advantage, as it allows to run Python code as a model in the user

interface. These were the reasons for choosing Open WebUI regarding time and the general usability.

3.4.3 Vector Store

A vector store was required to implement RAG into the prototype. The Qdrant vector store provides a simple
setup and a reliable management. A separate PostgreSQL database keeps track of the records to avoid duplicates

entries in connection with FlowiseAl.

3.4.4 Docker and Docker Compose

Docker and Docker compose is a widely used reliable engine for development and productive environments.
The usage of data mounts guarantees data integrity. As described in Section 3.5.1, Docker compose replaced
simple Docker setups during the development. Docker compose manages multi-container applications in a

”docker-compose.yaml” file. The code is available in the GitHub repository or in the Appendix C.

25

3.5 Development Environment and Challenges

This section discusses the successive development of the environment and arising challenges.

3.5.1 Docker to Docker Compose

The usage of separate Docker containers for each service soon arrived at its limits in a larger project. Therefore,
the setup was migrated to Docker compose, making the management, documentation and usage of Docker

containers a way simpler. The specific yaml files are accessible in Appendix C.

3.5.2 Challenges
Upgrading Ollama

As the field of LLMs experience a surge of new developments almost daily, several new models were published
during the development process and some of them were supported by Ollama. The upgrading process requires
to run the installation command again but overwrites the previous configuration. The solution is to backup
either the service or the configuration file before the upgrade and load/apply the service or the configuration

file respectively.

Mounting Storage

It is paramount to careful handle the data mounts while development to prevent data loss and to handle storage
size. The ”/etc/fstab” disk configuration file lists the mounts to automatically mount specified disks in Linux
OS at each reboot. If not handled carefully, new pulls of a model can land on the OS disk partitions and overfill
them.

Vector Dimensions of a Collection

Our vector store can hold different collections with different configurations. At the beginning several different
embedding models were tested, to find one that has a good performance with reduced resource consumption.
Every embedding model gives its output in different dimensions. Sometimes the responses from the LLM with
RAG context appeared to be very bad. It turned out, that the indexing of the collection was done by a different
model, which results in inaccurate responses. Additionally, attention has to be paid while uploading data with
a model that did not match the vector dimensions of the collection, because the upload can fail or even worse,

the responses by using this data are bad.

Open WebUI Title Generation

Open WebUI is quite like the OpenAl chat interface. On the left side of the interface, there are small buttons
with autogenerated headlines to the content of the specific chat. A specific ” Task Model” needs to be used to
generate the headlines, otherwise Open WebUI might not deliver results or even crash. The setting to configure

a "Task Model” can be changed in the admin panel of the Open WebUI web interface.

26

FlowiseAI Bugs

During this work FlowiseAl was under active development. To prevent it from crashing, it helped to create
”dummies” behind tool nodes (see Section 3.7.2). For a productive system, it might take longer time to produce

an errorless setup, still it is good for prototyping.

27

3.6 Model Evaluation

This section examines the evaluation of some models, which where suitable for this project due to their per-
formance and accessibility. All scripts, configurations, reviews and the question catalogue are contained in
Appendix A and B.

As expected, in the beginning the models did not understood the concept of REANA or how to build REANA
workflows. To determine which model is to be used, an evaluation was performed. The responses of the models
with and without RAG context are compared based on a question catalogue. Bar charts are used to illustrate
the results which are also provided in a list form in Appendix B. As a note, at the time of this evaluation it
was already evident, based on the first usage within this project, that the model ” qwen2.5-coder:32b-instruct-
q8-07[0QC25] seemed to generate very good results. This needed to be confirmed through the evaluation results.

Alternatively, the model that performs best in this evaluation had to be chosen.

3.6.1 Configuration Details

The vector store contains 8 different yaml files which describe different REANA workflows. Only 4 of them
where routed to the tested model as context per question via a RAG implementation, based on the question
itself. These files are provided as tutorials and are accessible in [P4NR24|. No further context was given. The
temperature was always set to 0.3 to achieve an reasonable but independent result with regard to the provided
context. The temperature configuration of the LLM defines the creativity of the answers. With low temperature

the answers become more reproducible.[ITem25]

Figure 3.6.1 describes a RAG workflow, which provides an API with which an upload of any file type is possible
via a curl request. This API was used by the vectorization.py script. The workflow consists out of 5 parts. A
text splitter, the configuration of an Ollama embedding model, a record manager to prevent duplicate records,

the definition what type is uploaded (in our case an file loader) and finally the configuration to the vector store.

28

@ Ollama Embeddings

Inputs

3.24:11434

ame

nomic-embed-text-137m-v1.3-fp16

Outpust

OllzrmaEmib

Recursh aracter Text
Splitter

Output

Output

@ File Loader

Inputs

Text Epittter

yami-files

Output

Output

Documet +
Qurant Retriever -

Figure 3.6.1: Implementation of a FlowiseAI workflow to upload files to Qdrant via API.

Without RAG the questions are sent directly to Ollama using the model_evaluation-
_request.py. Figure 3.6.2 shows a FlowiseAl workflow, which uses RAG and contains 4 components (vector
store, embedding model, chat model and conversational chain). The embedding model should be the same as

used for the vectorization and a chat model is defined. A conversational chain (designed by FlowiseAl based on
LangChain) uses the context of the vector store.

29

|@ ChatQllams

Inputs

L
hitp:#/141.33 165 2411434

Model Name

llama3 2datest

Temperare @

03

Allow Image Uploads @

‘@ Ollama Embeddings W
onversational Re
Inputs | Chain

| Inputs

hitp:141.33.165.24:11434

O =

Model Name

OllamaEmbeddi

yaml-fles

Output

Qdrant Retriever

Figure 3.6.2: Implementation of a FlowiseAl workflow for a RAG.

Type of Evaluation

The ratings of the results were carried out by hand to ensure the fulfilment of the task, to create a functioning
REANA workflow yaml file. The better results were given a higher score. Nonsense responses were rated 0.
Better responses but which did not provide a proper REANA configuration file were rated 1. Correct answered
catalogue questions and a proper REANA workflow configuration were rated 2. The same rating system was

applied to questions, which do not require the generation of yaml files

This method of evaluation is difficult to apply for other projects as an additional evaluation of a specific

task at hand needs to be done, in this case, to run or validate a REANA workflow.

30

3.6.2 Model Evaluation Overall

Figure 3.6.3 shows how the models perform for the provided question catalogue. In the right bar chart RAG
was used and, in the left, direct calls to Ollama were sent. It is evident, that the usage of RAG has a large

positive impact onto the responses of the LLMs. As a consequence, RAG was included into the final workflow.

Model evaluation by review Model evaluation by review
as s
40 A 40 -
35 A 35 A

30 30 4

254 254

204 204

Number of evaluations
Number of evaluations

154

10 +

bad average great bad average great
without RAG - direct calls to Ollama with RAG

Figure 3.6.3: Comparison of the model performance summarized by rating to illustrate the impact of RAG.

31

3.6.3 Model Evaluation by Model

In Figure 3.6.4 we can see that the model ”qwen2.5-coder:32b-instruct-q8_0” produces the best responses to the
given question catalogue. Please notice that in comparison to Figure 3.6.5 the benefit of RAG has not such an

impact on this model. But it is possible to provide a clear format, other information like environmental images
and specific parameters for REANA workflows via RAG.

Model evaluation by model

N bad
[0 average
N great

hf.co/matteogeniaccio/phi-4:F16

llama3.3:70b-instruct-q4 K M

llama3.1:70b

Model

mistral-small:22b-instruct-2409-fp16

gqwen2.5-coder:32b-instruct-q8 0

0 2 4 6 8 10 12
Number of answers

Figure 3.6.4: Model performance for LLM models without RAG.

32

Model evaluation by model

m bad

[0 average
I great
hf.co/matteogeniaccio/phi-4:F16

llama3.3:70b-instruct-qg4_K_M

Model

llama3.1:70b

mistral-small:22b-instruct-2409-fp16

gwen2.5-coder:32b-instruct-q8 0

: : : : with RAG|
0 2 4 6 8

10 12
Number of answers

Figure 3.6.5: Model performance for LLM models with RAG.

33

3.6.4 Model Evaluation by Model in Detail

The tasks and questions were divided into 3 categories. The first category contains general questions like ” What
is REANA?” or "How can I start a REANA workflow?”. The second category encompassed the task to create
workflows and scripts. This category will be split into 2 subtopics, ”programming” tasks and tasks where
specific context is already present via RAG. As mentioned before the comparison of the Figures 3.6.6 and 3.6.7
implies a large impact by the usage of RAG. It is especially noticeable for questions where specific context from
the vector store is given. Here, the focus lies on the promising ” qwen2.5-coder:32b-instruct-q8_0” model. The
results are even more impressive because no prompt engineering was used, and the model was provided only

with user input and the vector store context.

Model evaluation by model

bad c=0

bad c=1

bad c=2
average c=0
average c=1
average c=2
great c=0
great c=1
great c=2

hf.co/matteogeniaccio/phi-4:F16

pnngoanen

llama3.3:70b-instruct-q4 K M

llama3.1:70b

Model

mistral-small:22b-instruct-2409-fp16

qwen2.5-coder:32b-instruct-q8_0

‘ . . . without RAG
0 2 4 6 8 10 12
Number of answers
Class 0 are general questions / tasks
Class 1 are questions / tasks to create yaml files and write code
Temperature is 0.3 Class 2 are questions / tasks to create yaml files and write code with provided information (RAG)

Figure 3.6.6: Model performance for LLM models without RAG by task categories.

34

Model evaluation by model

bad c=0

bad c=1

bad c=2
average c=0
average c=1
average c=2
great c=0
great c=1
great c=2

hf.co/matteogeniaccio/phi-4:F16

pnngoanen

llama3.3:70b-instruct-q4 K M

llama3.1:70b

Model

mistral-small:22b-instruct-2409-fp16

qwen2.5-coder:32b-instruct-q8_0

: . . . : with RAG|

0 2 4 6 8 10 12
Number of answers
Class 0 are general questions / tasks
Class 1 are questions / tasks to create yaml files and write code
Temperature is 0.3 Class 2 are questions / tasks to create yaml files and write code with provided information (RAG)

Figure 3.6.7: Model performance for LLM models with RAG by task categories.

3.6.5 Validation

The evaluation confirmed the assumption for the ”qwen2.5-coder:32b-instruct-q8_0” model to fit well the given

task and to answer the questions catalogue. Accordingly, this model is used in the final workflow/agent system.

35

3.7 First Steps with FlowiseAlI and Open WebUI

This section explains the first steps with FlowiseAI and Open WebUI. To get a basic understanding of FlowiseAl
and Open WebUI, there are three main sources of information, which were also used for this thesis.

e A YouTube playlist [LvZF124] for the FlowiseAl general explanations

e The Open WebUI homepage [0H24] helps with the setup of the Open WebUI and the specific pipeline

container.
e Different GitHub projects and issues [OwuGh24|, [0GD24] and [0GE24]| for code examples and pipelines

The first implementation included a chatbot based on the pipeline in [0GD24] which connected a FlowiseAl
workflow to Open WebUI and was mentioned in Section 3.7.1. Next, Python code was run via a pipeline [0GE24].

3.7.1 Python Runner with Matplotlib

The following approach extends the first examples with the usage of Matplotlib. The FlowiseAl workflow
generate Python scripts and the Open WebUI pipeline runs these scripts. Since plots are not shown in Open

WebUI, the Python script have to encode the plot as base64 encoded string and returns it in markdown format.

FlowiseAI Workflow

Figure 3.7.1 shows the steps. First, the starting point and the base model ”qwen2.5-coder:32b-instruct-q80”
were set. After that the Python files were generated by an LLM node with the following prompt. The user

input was given by a separate prompt value.

You should write python files. Please only give the clear python code. Format the code
— correctly, but please markdown formats. ONLY CODE! No annotations or explanaitons! And
— ONLY ONE PYTHON FILE - NOTHING ELSE

After that the output of this node was routed to a conditional agent, which decides either the script uses
Matplotlib or not. If Matplotlib was not used, the next node should only pass the generated code as output. If
Matplotlib was used, a different node rewrites the script to generate the base64 encoded string, with which the
display of the plot is possible. To achieve this the prompt below was used.

You will get some code to format. It is a python script, that contains matplotlib and

— especially plt.show(). You should format it to markdown readable. Therefore, you have
— to save the figure into an buffer, format it into base64 and write it into an specific
— markdown format + output it. Here an example how that can look like:

write to buffer

buffer = io.BytesIO()

plt.savefig(buffer, format='png', bbox_inches='tight')

36

buffer.seek(0)

Encode the image as Base64

img_base64 = base64.b64encode(buffer.read()).decode('utf-8')
buffer.close()

make it markdown readeble

markdown_image = f"![Figure] (data:image/png;baseb4,{img_base64})"
print (markdown_image) # Output Markdown for embedding

The first script was provided like this. The part ”{code}” will be replaced with the actual input.

This is the actually code:
{code}

IMPORTANT: JUST GIVE THE PYTHON CODE. I WANT NO EXPLANATIONS!

‘e LLM Node
@ LLM Node I

t | Condition | LLM | Tool
Inputs

Condition | LLM | Tool

e Condition Agent
—_——— Chat Model @
@ ChatOllama Inputs

Nama
Inputs < gent | LLM | Tool Node
Creatot

Cache Chat Model @
Dutput Inputs

Base LURL Name
LLMNode Agent | Condition | LLM | Tool Nade
http://141.33.165.24:11434 Ll condi i

Nod §
Model Name TSSS—S—S—S—_——— @ LLM Node (
_— End
qwen2.5-coder:32b-instruct-q8_0 —
Inputs

ition | LLM | Tool

Inputs

Temperature @ Agent | Condition | LLM | Tool Node

0.3 ci el @
Output

Ager Memory @

Output State @

Input Moderation @

Output
Output

LLMNode @&

Figure 3.7.1: A FlowiseAl workflow to generate Python scripts incl. the detection of Matplotlib.

37

Open WebUI Pipeline

The next step was to connect the previous FlowiseAl workflow via its API to Open WebUI and run the Python
code. The whole pipeline is accessible in the Appendix D. The parts of the pipeline of particular interest are
the connection to FlowiseAl, the implementation of a function to run the Python code and the definition to
give Open WebUI a markdown formatted output.

In the code snippet below the pipeline makes a request to the FlowiseAl workflow. The ”request” is a built in

the Python functionality.

url = 'http://141.33.165.24:8000/api/vl/prediction/5467£902-a69f-4bb1-8db7-40a70da88d64 "
headers = {'Content-Type': 'application/json'}
data = {'question': user_message}

response = requests.post(url, json=data, headers=headers)

The ”execute_python_code” function runs the Python script as subprocess and returns the output.

def execute_python_code(self, code):

try:

result = subprocess.run(
["python", "-c", codel], capture_output=True, text=True, check=True

)
stdout = result.stdout.strip()
return stdout, result.returncode

except subprocess.CalledProcessError as e:

return e.output.strip(), e.returncode

Next, the function is used to request and to build a markdown formatted output. The Python code is executed
which is contained in the response. After that the output from the FlowiseAl workflow is set to the first view

the actual script and then the output of it. Open WebUI receives the output and displays it to the user.

stdout, return_code = self.execute_python_code(response.json() ['text'].split(' " “python')
o« [1].split (' =" [0D)
output = response.json()['text'] + '\n script output:\n' + stdout

return output

38

Example

Here the results of the end user output are shown, one with Matplotlib (Figure 3.7.2), and one without (Figure
3.7.3).

reate an hello world scrip

@ Plotting Pipeline

python Run Save Copy

print("Hello

ript output:

Figure 3.7.2: Open WebUTI response to run a Python script without Matplotlib.

39

that plots an functi

Sine Function

Figure 3.7.3: Open WebUI response to run a Python script with Matplotlib.

Summary

The presented implementation shows the capabilities of FlowiseAlI in connection with a Open WebUI pipeline,
which executes Python code. It provides the proof of concept, that the thesis question can be solved by the
suggested methods. It also makes clear that many different tools, implementations and prompt engineering are

required for the solution.

40

3.7.2 Implementation to Generate and Run REANA Workflows

Based on the acquired knowledge the next step was to build a system to generate and run REANA workflows.

The example provides the system prompts. Further input is given via prompt values.

FlowiseAI Workflow

The extended FlowiseAl workflow is divided into parts (Figure 3.7.4, Figure 3.7.5, Figure 3.7.6).
The first part only shows the starting point and the settings of the base and embedding model. The base model,
which is used by all nodes as default was set to ”qwen2.5-coder:32b-instruct-q8_0” and as embedding model,

which was used to vectorize the user prompt to use RAG, "nomic-embed-text:137m-v1.5-fp16” was chosen.

|® Ollama Embeddings @ ChatOllama | @ Start

Inparts Inparts
E:ase UAL

hithp:141.33.165.24: 11434
Lt Agent Memary

R hittp:141.33.103.24:11434
Model Mame State iy

momic-embed-text 137m-v1.5-fpia

Miodel Hame Input Moderation @

gwenz. -ooder:32b-instract-q8_0
Output

Outpurt

DllamaEmbeddings

Output

ChatDisma +

Figure 3.7.4: A FlowiseAl workflow to generate a REANA workflow, Part 1 of 3

The second part explains the usage of the tools. An LLM and a tool node use a retriever to get context from
a vector store. A retriever component in FlowiseAl can be understood as link between the tool node and the
vector store configuration. The vector store contains the different yaml files, as explained in Section 3.6. Notice
that the functionality of this system can only be guaranteed, if a ”credentials.py” file with a REANA token is
located in ” /app” in the pipeline container due to the required authorization. REANA URL has to be set as
environmental variable within the Docker container in the ”docker-compose.yaml” file for the pipeline container.
Here is the prompt of the first LLM node.

41

You are an assitent to create reana workflows as yaml files.
Please generate your answer based on the user input.

PLEASE ONLY CREATE THE YAML AND PYTHON FILES. NOTHING ELSE!

IMPORTANT: JUST GIVE THE PYTHON CODE. I WANT NO EXPLANATIONS!

The tool node prompt will be set to the default FlowiseAl value and the retriever tool prompt reads:

This Retriever is connected to a vector store. This vector store contains example yaml
— files for REANA workflows.

0 Qdrant

ietriever Mame:

reana-yam|-retrizver

hittgr (7141 33.103.24:033:
Thiz Aetrieve
wectore store
tion Name
veotore siore contains examphe yaml
yami-fles files For reara workflows

Jocurments

Output

Odrant Retriever

LLM Pode

Hame

reana-yaml-iocl
reana-node

Figure 3.7.5: A FlowiseAl workflow to generate a REANA workflow, Part 2 of 3

42

In the end two LLM nodes were used to generate the answer. The “dummy” passes the tool node output and
bypasses some of the FlowiseAl bugs. Here is the prompt for the next step.

DO NOT RESPOND. DO NOT CALL TOOLS. JUST PASS THE INPUT FORWARD!

The second node actually generates the response with the following prompt.

Based on the given input, please generate a reana workflow yaml file based on the users

< input. Please use this as enviroment if possible

<~ 'gitlab-p4n.aip.de:5005/p4nreana/reana-env:py311-astro.9845'. Don't run pip commands!
— Please fit your anweser to the given example. Don't add other paramerts. Note that the
< paramter "version" have do be string type(version: '0.13').

PLEASE ONLY GIVE THE YAML FILE AND PYTHON FILES AS OUTPUT. NOTHING ELSE!

Format should be:

code

@ LLM Node |@ LLM Node

Inputs Inputs

Agent | Condition | LLM | Toal agent | Condrtion | LLM | Toal

Chat Moded I Chat Model @ @ End

Inpats
Hame Hame

Agent | Condition | LLM | Tool Node
reana-dummy @) reanzanswer 3

Output Output

Figure 3.7.6: A FlowiseAl workflow to generate a REANA workflow, Part 3 of 3

43

Open WebUI pipeline

Open WebUI is connected to the extended workflow in the same way as before. This subsection explains the
main functionalities and the markdown formatting for the output. The complete pipeline is again available in
the Appendix D.

This new pipeline needs much more imports which require further libraries’ dependencies. The depen-

dencies are specified in the pipeline.

import reana_commons.validation.utils as rcv
import yaml

import re

import reana_client.api.client as rcl

import credentails

The core of this pipeline are the REANA command line tools. These tools are programmed in Python and
their functions can be used in any Python script. The following code shows how the response of the LLM can
be split to get the different files, which are needed to run a REANA workflow. The split is only possible since
the workflow generates a specific file format. The first file is a definition of a REANA workflow file in yaml
format. This definition will be validated with the function ”validate_reana_yaml”. If this succeeds, the workflow
is created with the ”create_workflow” command. Then the Python files will be uploaded with the ”upload_file”
command. Finally, the workflow is started with the ”start_workflow” command. At this point, the REANA
workflow runs on a REANA cluster and the results can be accessed via the REANA web interface.

validation = False
reana_file = {}
files = []
file_list = []
try:
files = re.split(r'~ "~ .*7\n', text)
files[len(files)-1] = files[len(files)-1].replace(' "', '')

files = list(filter(lambda item: item not in ['\n', ''], files))
reana_file = yaml.safe_load(files[0])
file_list = reana_file["inputs"]["files"]
if (len(rcv.validate_reana_yaml(reana_file)) < 1):
validation = True
except Exception as e:
print("Error:", e)

validation = False

if(validation):

44

rcl.create_workflow(reana_file, "hello", credentails.reana_api_key)
for i in range(l, len(files)):
rcl.upload_file("hello", files[i], file_list[i-1], credentails.reana_api_key)
rcl.start_workflow("hello", credentails.reana_api_key, None)
return "# This yaml specifications should work and will be run\n" + text
else:

return "# The response is not a valid REANA YAML. Please generate again. \n" + text

To create an end user response, different outputs are generated if the run is successful. The user receives a
short message that the REANA workflow was started. If the generation did not work or the validation failed,

the user also receives a response.

45

Example

Figure 3.7.7 shows how a request via Open WebUI generates and starts a REANA workflow, which uses 2

python files to create a plot of an sinus function.

Reana-Runner

This yaml specifications should work and will be run

Figure 3.7.7: Open WebUI response to create a REANA workflow and start a job on the REANA cluster.

46

The 2 following Figures (3.7.8, 3.7.9) are showing, that the workflow ended successfully and the plot was saved

as well.
& hello #57 finished in 22 seconds .
Finished 5 minutes ago step 2/2 °

& Engine logs >_Job logs [Workspace @ specification

Step plot-sine-data - & Kubernetes & gitlab-p4n.aip.de:5005/p4nreana/re... $ python plot_sine.py
job: :
Completed

Figure 3.7.8: The REANA workflow is executed successfully.

sine_plot.png

Sine Curve

1.00 4 —— Sine Curv

0.75 A

0.50 -

0.25

0.00 -

sin{x)

—0.25 A

=0.50 1

=0.75 A

—1.00 4

Figure 3.7.9: A sinus graph is a result of a REANA job execution. The REANA workflow was generated via the OpenWebUI web
interface and successfully executed on the REANA platform.

47

Chapter 4

Final Setup

This section describes the final prototype. The proposed solution for the automated generation of REANA
workflows using LLMs in connection with state-of-the-art technologies provides the proof of concept and can be

used as a starting point for the development of productive systems. The prototype has following main tasks:

1. generate and modify a REANA workflow,

2. upload the generated workflow to REANA platform,

3. create a GitLab repository for the REANA workflow configuration files,
4. answer general questions

5. give hints when the system is wrongly or harmfully used.

Figure 4.0.1 illustrates a sequential processing of the request via agens and LLMs on a basis of a FlowiseAl

workflow as described in Section 4.1.2.

d yaml-tool v " answer
||
A4
reana- reanea-val- reana-val- reana-
output < = i~
: pass-llm A ca N tn _—_——

Figure 4.0.1: Sequential processing of the request in a Flowise Al workflow.

The implementation of the tasks is discussed in the next sections. More examples and figures are provided in

Appendix E.

48

4.1 FlowiseAlI Workflows

The final setup is built on top of 2 different FlowiseAl workflows. The first one generates and adjusts REANA
workflows. The other one provides an endpoint for the Open WebUI pipeline. The source code for the workflows

is accessible in the GitHub repository!.

4.1.1 Output Standard Format

The first workflow generates different REANA workflows in a specific format. The output of this workflow
should be:

yaml file
python file

python file

The specific output is achieved through prompt engineering.

4.1.2 REANA Generation Workflow

First, the base model " qwen2.5-coder:32b-instruct-q8_0” for this workflow is defined and the ”state” for variables
is set. The starting point is connected to the first LLM node. The LLM node uses the tool node. The
RAG process requires a retriever, a vector store configuration and a specific embedding model, ”nomic-embed-
text:137m-v1.5-fp16” model in this case. To stabilize FlowiseAl, the output is passed through a ”dummy” node,
as described in Section 3.7.2.

Next, the yaml and Python file(s) for the REANA workflow are generated by a more complex prompt. The
markdown string is saved in the pre-defined state/variable, so that another LLM cannot change the original.
The string is validated by the next LLM and the tool node. A validation tool was developed for this purpose
and is described in Section 4.3.2. The conditional agent decides if the validation was successful or not based
on the validation output. If the validation failed the follow-up LLM node will address the user to rephrase the
task or question. If the validation was successful, the follow-up LLM node will forward the markdown output

string with the generated yaml and Python files.

lhttps://github.com/etlstrauss/bachelor-thesis-public

49

https://github.com/etlstrauss/bachelor-thesis-public

Last, the LLMs nodes are connected to an endpoint component. The Figure 4.1.1 provides an abstraction of
this FlowiseAI workflow.

Generation

- starting _».| «LLMnode | | ° E(;lcrlr;my | .LLMnode

point (input) . Toolnode V| .Toolnode |[J
. base model . LLM node
. state N N

(variable) JC 4

. . Retriver

. Embedding | . Vector . Custom

model L — tool

RAG 4 Validation
b =) tout . Conditional
. end (output) ass outpu agent
“N| . LLM node Validation
(good / bad)

Figure 4.1.1: A FlowiseAl workflow to generate REANA workflow configurations.

4.1.3 Open WebUI Endpoint Workflow

The Open WebUI endpoint workflow, which was abstracted in Figure 4.1.2, provides the API to connect the
Open WebUI pipeline container to FlowiseAl. The user has four options to choose from: to generate a REANA
workflow, to upload/start a workflow to/on REANA or to create a GitLab repository with the created workflow.
Furthermore, the system could process questions from the question catalogue. A drawback of this system is
that if no REANA workflow was initially requested or provided by the user, the LLM node might invent a fake
REANA workflow, by creating a GitLab repository or start a REANA workflow.

First, as for the previous workflow, the base model ”qwen2.5-coder:32b-instruct-q8_0”, a state and a start-
ing point are set. The first LLM node is powered by a specific guard model ”granite3-guardian:8b-q5_K_M”.
This model checks the user input for harmful content or jail breaks. If the guard model is triggered, the user
runs an empty node. If the query passes through the guard, a conditional agent behind a ”dummy” node decides
if which of the listed options should be chosen. The LLM node and the tool node are connected behind every

decision of the conditional agent. Custom tools or the previous REANA generation workflow is used.

50

A separate LLM node plus the ”dummy” node are handling the output and connect to an end component. The

output is in these cases a generated or adjusted REANA workflow, a link to a Gitlab repository or an ID of the
REANA workflow run on the REANA platform. The question node output will not be processed with other

nodes.
Upload to reana
. custom . dummy
tool . LLM node N node
. REANA Y. Tool node . LLM node
upload . end
L General
. LLM node '|> - end
. guard model
s // . custom tool
gkt i Kind of user task // . workflow
.) | eneration
point (input) . LLM Node QU s 7 .
N o node "
. base model| — > . Conditional > - AN
/ . Conditional ac
. State agent agent N dummy
variable :
() Check harm N . node
= </ . LLM node :»\ . LLM node
o . Tool node . end
RS Generate workflow
S
. LLM node - dummy
. g:fﬁ;? oo . LLM node | N node
. " .Toolnode ' .LLM node
s Loload . end
5]
Upload to GitLab

. simple model

Figure 4.1.2: A FlowiseAl workflow provides an endpoint for the OpenWebUI pipeline container incl. the executed components.

4.2 Open WebUI Pipeline

The Open WebUI pipeline connects the Open WebUI endpoint workflow from the FlowiseAl Docker container

to Open WebUTI and is accessible in the Appendix E. The last message is appended to the user input as context

and is sent to FlowiseAl as an API call. The following code block demonstrate how this was done using the

initial ”user_message” and the list of messages, which will be provided by Open WebUI.

o1

if (len(messages) > 1):
user_message = user_message + "\n History:\n" +

- messages[len(messages)-2].get("content")

52

4.3 Custom Tools

This section describes the custom tools implemented within this thesis project. The tools are provided inside a

docker container.

4.3.1 General Structure

The docker container is run via ”docker compose”. It is built with a Dockerfile. The Python libraries are
installed on top of the image and are included in the "requirements.txt”. Furthermore, a specific credential
file provides REANA platform and Gitlab tokens and/or ssh key for authorization. These components are
specified in the ”docker-compose.yaml” file, displayed in Figure 4.3.1. Also an environmental variable defines
the URL of the REANA service at the AIP. ”host.docker.internal” is mapped to ”host-gateway” to enable the
communication with the container APIs. The container restart policy is set to always so that the container

always restarts after a crash or a reboot of the host.

services:
aiptools:
build:
context:
dockerfile: Dockerfile
image: aiptools:latest
ports:
- 5000:5000
environment:
- REANA_SERVER_URL=https://reana-p4n.aip.de
extra_hosts:
- host.docker.internal:host-gateway

restart: always

Figure 4.3.1: Docker compose yaml file of tool container, which exposes the internal structure to understand the parameters,
which are necessary to guarantee the functionality of the container.

The Docker container image is based on the official ”python:3.12-slim” image. Figure 4.3.2 shows the Dockerfile,
which sets the working directory to ” /app” and uses ”apt-get update/install” to install 2 REANA specific
libraries and ”gitpyton”. Also it copies the ”app.py”, ”credentails.py” and ”requirements.txt” (described in
Figure 4.3.3) files into the working directory. The "requirements.txt” Python libraries are installed via pip.

The port 5000 is exposed and the app is started.

FROM python:3.12-slim

WORKDIR /app

53

RUN apt-get update && \
apt install build-essential -y

RUN apt-get update && apt-get install -y git

COPY app.py /app
COPY credentails.py /app
COPY requirements.txt ./

RUN pip install --no-cache-dir -r requirements.txt
RUN pip install flask

EXPOSE 5000

CMD ["python" s napp .pyn]

Figure 4.3.2: Tool container Dockerfile.

reana-client
reana-commons

gitpython

Figure 4.3.3: ”requirements.txt” file contains the Python library dependencies.

4.3.2 Tools

The ”app.py” file imports the validation tool, reana_client, further general libraries, the credentials and initializes
”flask”.

from flask import Flask, request, jsonify

from reana_commons.validation import utils as rcv
import reana_client.api.client as rcl

import yaml

import re

import git

import os

import uuid

import credentails
app = Flask(__name__)

[functions]

54

if __name__ == '__main_

app.run(host='0.0.0.0")

REANA Workflow Validation

The validation tool is a wrapper around the ”reana-client” library. It extracts the data out of the request via
a specific Json key and the string is loaded as ”yaml” format as expected by the ”reana-client” library. The
"validation” function of the ”reana-client” library is used to verify the given REANA workflow. FEither the

function returns ”validation:True” or ”validation:False”.

Q@app.route('/validate', methods=['POST'])
def validate():
try:
data = request.get_json()
reana_file = data.get('reana_file')
print(len(rcv.validate_reana_yaml (yaml.safe_load(reana_file))))
if (len(rcv.validate_reana_yaml (yaml.safe_load(reana_file)))<1):
return jsonify({'validation': Truel})
else:
return jsonify({'validation': False})
except Exception as e:

return jsonify({'validation': Falsel})

Upload to REANA Platform

Next task was to upload the generated workflow and to try to run a job on the REANA platform.

First, a UUID is generated and indicates that the workflow is LLM generated. Since the input request is
standardised, it can be split using regular expressions. Similar to the ”validation” function, ”reana_client” and
the credentials are used to upload the configuration file incl. the Python files and the job might start on the
REANA platform, which needs to be checked in the REANA dashboard with the job ID. The LLM generates

a response based on the ”reana_client” output.

Qapp.route('/full_upload', methods=['POST'])
def full_upload():
try:

random_id = "llm-gen-" + str(uuid.uuid4())
data = request.get_json()
files = re.split(r' "~ .*7\n', data.get('content'))
files[len(files)-1] = files[len(files)-1].replace(' """, '")
files = list(filter(lambda item: item not in ['\n', ''], files))

reana_file = yaml.safe_load(files[0])

55

rcl.create_workflow(reana_file, random_id, credentails.reana_api_key)
file_list = reana_file["inputs"]["files"]
for i in range(l, len(files)):

rcl.upload_file(random_id, files[i], file_list[i-1],

— credentails.reana_api_key)
rcl.start_workflow(random_id, credentails.reana_api_key, None)
return jsonify({'status': True, 'worflow_id': random_id})

except Exception as e:

return jsonify({'status': Falsel})

Create a GitLab repository

The task for this tool was to create a git repository and to push the generated REANA workflow into a repository
on Gitlab. The input data is processed. A git repository with the generated configuration files is created locally
and then is published on AIP Gitlab. The output is the URL for the repository on Gitlab and the status of the

call.

Q@app.route('/push_to_gitlab', methods=['POST'])
def push_to_gitlab():
try:
def initialize_local_repo(repo_path, remote_url, token):
Create the directory if it doesn't exist
if not os.path.exists(repo_path):

os.makedirs (repo_path)

Inittalize the repository
repo = git.Repo.init(repo_path)
print(f"Initialized a new git repository at {repo_path}")

data = request.get_json()
files = re.split(r' "~ .*7?\n', data.get('content'))
files[len(files)-1] = files[len(files)-1].replace('~ """, '')
files = list(filter(lambda item: item not in ['\n', ''], files))
reana_file = str(files[0])
with open(f'{repo_path}reana.yaml', "w") as f:
f.write(reana_file)
repo.index.add([f'{repo_path}reana.yaml'])

file_list = yaml.safe_load(reana_file) ["inputs"]["files"]

for i in range(l, len(files)):

56

with open(f'{repo_path}{file_list[i-1]}"', "w") as f:
f.write(str(files[i]))
repo.index.add([f'{repo_path}{file_list[i-1]}'])

repo.index.commit ("Initial commit")

print("Created initial commit")

origin = repo.create_remote('origin', remote_url)
print (f"Added remote: {remote_url}")
origin.push(refspec="master")

print ("Pushed to remote repository")

return jsonify({'status': Truel})

data = request.get_json()

repo_name = data.get('repo_name')

random_id = str(uuid.uuid4())

initialize_local_repo(f'/app/{random_id}/', f'https://etlstrauss:{credentails.git
— lab_passwd}@gitlab.aip.de/etlstrauss/{random_id}.git',

— credentails.gitlab_token)

return jsonify({'status': True, 'repo_url':

— f'https://gitlab.aip.de/etlstrauss/{random_id}'})

except Exception as e:

return jsonify({'status': Falsel})

57

Chapter 5

Evaluation of the Setups

The goal of this thesis implementation was to make the usage of LLMs for creation of the REANA workflows
more user friendly and simpler. Several points need to be considered for the evaluation of the proposed setups.
First, the quality of the responses is tested vs. direct curl requests to LLMs. Second, the time consumption is

evaluated.

5.1 Response Evaluation

Figure 5.1.1 shows, how the final setup with the FlowiseAl and Open WebUI endpoint, include the ”qwen2.5-
coder:32b-instruct-q8_0" LLM performs in comparison to requests via curl LLM requests. The figure is available
in list form in Appendix F

Direct call to Ollama FlowiseAl call Open WebUI endpoint

12 4

101

Number of evaluations
@

Number of evaluations
(=]

T T
bad average great bad average great

Figure 5.1.1: Model performance diagram for Ollama direct calls with the ”qwen2.5-coder:32b-instruct-q8 0” LLM model vs. final
prototype API calls to the final prototype.

58

5.2 Time Consumption

As reference for the time consumption a direct call to Ollama is used. Table 5.2.1 shows that the RAG FlowiseAl
setup is faster than the reference value of 33s. The answers of the specialised workflows are shorter, please see
Appendix E for references. It can be tentatively assumed that specialised systems are more time effective.

For the time evaluation a script ”time-consumption.py” was used. The LLM models were already loaded by

Ollama and therefore did not affect the time consumption.

| | Time(in s) |
Direct Ollama call 33.04
Simple RAG call 12.09
FlowiseAl call 64.03

Table 5.2.1: Time consumption comparison

59

Chapter 6

Conclusions

A prototype which uses LLMs with RAG and Agents was implemented and evaluated to analyse the question
of this thesis "How effective are LLMs with RAG and Agents in improving data analysis pipelines in terms
of effectiveness and accuracy in astrophysics?”. The prototype can automatically generate REANA workflows.
This proves that LLMs setups are capable to fulfil the given task. The system also achieves high accuracy for
the given questions catalogue. The generated REANA workflows are available via GitLab repositories, and a
job can be run on the REANA cluster.

6.0.1 Benefits and Limitations

First, the initial setup was built with a pool of agents in connection with FlowiseAl, but was discarded since

this did not produced the expected results. Instead, a system with sequential agents was built.

The main advantage of this implementation is that all data and software are located on a server at the AIP. This
is important for the data protection regulations. All parts of the system do not connect to external resources
and can be exchanged and verified. As the logs are also available locally, the debugging and tuning process is

simplified as well.

As the software are run on premise, the system administrator has the challenge to handle all the resources
and configuration locally as well. The speed of the execution is of course also limited by local resources and
the expertise present on premise. Given the nature of LLMs, the output might differ from time to time. The

resource usage was limited to one graphic card with a GPU memory of 48GB GDDR6.

6.0.2 Next Steps

This thesis has demonstrated the feasibility of using LLMs, RAG, and agent-based systems to enhance the
automation and reproducibility of data workflows. Through the development and evaluation of a prototype,

it has been shown that integrating Al-driven tools can streamline the generation and validation of REANA

60

workflows, offering a potential paradigm shift in computational research.

The results indicate that while LLM-based automation significantly improves efficiency, several challenges re-
main. Issues related to workflow validation, execution reliability, and integration with existing research in-
frastructures need to be addressed before such systems can be deployed at scale. Additionally, as LLMs and
associated technologies continue to evolve, further research is required to optimize performance, improve inter-

pretability, and ensure data integrity.

Future work should explore the potential of distributed AI architectures, enhanced security mechanisms, and
adaptive learning models to further refine the automation process. By addressing these challenges, the integra-
tion of LLMs in scientific workflows could pave the way for a new era of intelligent, reproducible, and efficient

research methodologies.

61

Chapter 7

Acknowledgments

First of all, I thank the Astrophysical Institute Potsdam (AIP) and the University of Applied Science ”Hochschule
Stralusnd”, represented respectively by Dr. rer. nat. Arman Khalatyan and Prof. Dr. rer. nat. André Griining
for the possibility to accomplish this bachelor thesis project in such a large scope. I would also like to thank

Anastasia Galkin and Guido Kuhlmann for the editing help.

62

Bibliography

[AKG24]
[AKP24]
[CDS24]
[CGS24]

[CIBM24]

[EgaAtEl24]

[FGS24]
[F124]
[FILC24]
[FILI24]
[FIU24]
[FLMA24]
[FLSA24]

[GaoEtAl24]

Dr. Arman Khalatyan, The problem of creating REANA workflows.
Dr. Arman Khalatyan, Solution approach for generating REANA wokrifows.
crewAlL [Online]. Available: https://docs.crewai.com/ (visited on 09/24/2024).

Installing crewAI - crewAlI [Online]. Available: https://docs.crewai.com/getting-started/
Installing-CrewAI/ (visited on 09/24/2024).

What is crewAI? — IBM. [Online]. Available: https://www.ibm.com/think/topics/crew-ai
(visited on 09/24/2024).

K. Egashira, M. Vero, R. Staab, J. He, and M. Vechev, Ezploiting LLM Quantization, arXiv:2405.18137
[cs], Nov. 2024. DOI: 10.48550/arXiv.2405.18137. [Online]. Available: http://arxiv.org/
abs/2405.18137 (visited on 01/02/2025).

Get Started — FlowiseAI [Online]. Available: https ://docs . flowiseai . com/ getting -
started (visited on 09/20/2024).

Introduction — FlowiseAI [Online]. Available: https://docs . flowiseai . com/ (visited on
00/24/2024).

LangChain — FlowiseAIL [Online]. Available: https://docs.flowiseai.com/integrations/
langchain (visited on 09/24/2024).

LiamaIndex — FlowiseAlL [Online]. Available: https://docs.flowiseai.com/integrations/
llamaindex (visited on 09/24/2024).

Utilities — FlowiseAI [Online]. Available: https://docs. flowiseai . com/integrations/
utilities (visited on 09/24/2024).

Multi-Agents — FlowiseAIL [Online]. Available: https://docs . flowiseai . com/ using -
flowise/agentflows/multi-agents (visited on 01/02/2025).

Sequential Agents — FlowiseAI [Online]. Available: https://docs.flowiseai.com/using-
flowise/agentflows/sequential-agents (visited on 01/02/2025).

Y. Gao et al., Retrieval-Augmented Generation for Large Language Models: A Survey, arXiv:2312.10997
[cs], Mar. 2024. [Online]. Available: http://arxiv.org/abs/2312.10997 (visited on 11/18,/2024).

63

https://docs.crewai.com/
https://docs.crewai.com/getting-started/Installing-CrewAI/
https://docs.crewai.com/getting-started/Installing-CrewAI/
https://www.ibm.com/think/topics/crew-ai
https://doi.org/10.48550/arXiv.2405.18137
http://arxiv.org/abs/2405.18137
http://arxiv.org/abs/2405.18137
https://docs.flowiseai.com/getting-started
https://docs.flowiseai.com/getting-started
https://docs.flowiseai.com/
https://docs.flowiseai.com/integrations/langchain
https://docs.flowiseai.com/integrations/langchain
https://docs.flowiseai.com/integrations/llamaindex
https://docs.flowiseai.com/integrations/llamaindex
https://docs.flowiseai.com/integrations/utilities
https://docs.flowiseai.com/integrations/utilities
https://docs.flowiseai.com/using-flowise/agentflows/multi-agents
https://docs.flowiseai.com/using-flowise/agentflows/multi-agents
https://docs.flowiseai.com/using-flowise/agentflows/sequential-agents
https://docs.flowiseai.com/using-flowise/agentflows/sequential-agents
http://arxiv.org/abs/2312.10997

[GHR24] Home - reanahub/reana Wiki. [Online]. Available: https://github . com/reanahub/reana/
wiki/ (visited on 01/14/2025).

[HF25] Hugging Face — The AI community building the future. [Online]. Available: https://huggingface.
co/ (visited on 02/03/2025).

[HFGG24] Introduction to ggml. [Online]. Available: https://huggingface.co/blog/introduction-to-
ggml (visited on 01/28/2025).

[HQw25] Quwen (Qwen). [Online|. Available: https://huggingface.co/Qwen (visited on 02/03/2025).

[I[GGUF24] GGUF versus GGML — IBM. [Online]. Available: https://www.ibm.com/think/topics/gguf-
versus-ggml (visited on 01/02/2025).

[[Hal25] What Are AI Hallucinations? — IBM. [Online]. Available: https://www.ibm. com/think/
topics/ai-hallucinations (visited on 02/03/2025).

[[Tem25] What is LLM Temperature? — IBM. [Online]. Available: https://www . ibm . com/think/
topics/llm-temperature (visited on 02/03/2025).

[IWAA24] What Are AI Agents? — IBM. [Online]. Available: https://www.ibm.com/think/topics/ai-
agents (visited on 01/02/2025).

[L1] Introduction — LangChain. [Online|. Available: https://python.langchain. com/v0.2/docs/
introduction/ (visited on 01/21/2025).

[L2] Ollama. [Online]. Available: https://ollama.com/search (visited on 01/21/2025).

[L3] Https: //www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature /quadrc

rta-8000-us-nvidia-946977-r1-web.pdf. [Online]. Available: https://www.nvidia.com/content/
dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-
8000-us-nvidia-946977-r1-web.pdf (visited on 11/05/2024).

[LCI24] Introduction — LangChain. [Online]. Available: https://python.langchain.com/v0.2/docs/
introduction/ (visited on 09/24/2024).

[LCQ24] Installation — LangChain. [Online]. Available: https://python.langchain.com/v0.1/docs/
get_started/installation/ (visited on 09/24/2024).

[LFGS24] Installation — Langflow Documentation. [Online]. Available: https://docs.langflow.org/
getting-started-installation (visited on 09/20/2024).

[LFW24] Welcome to Langflow — Langflow Documentation. [Online]. Available: https://docs.langflow.
org/ (visited on 01/03/2025).

[LII2024] Llamalndex - Llamalndez. [Online]. Available: https://docs.1llamaindex.ai/en/stable/
#introduction (visited on 09/24/2024).

[LinAtEI24] J. Lin et al.,, “AWQ: Activation-aware Weight Quantization for On-Device LLM Compression
and Acceleration,” en,

[LvZF124] L. van Zyl, Flowise AI (2024) Tutorial - YouTube. [Online]. Available: https://wuw.youtube.
com/playlist?list=PL4HikwTaYEOH7wBxhvQqxYcK0kZ403zXh (visited on 01/06/2025).

64

https://github.com/reanahub/reana/wiki/
https://github.com/reanahub/reana/wiki/
https://huggingface.co/
https://huggingface.co/
https://huggingface.co/blog/introduction-to-ggml
https://huggingface.co/blog/introduction-to-ggml
https://huggingface.co/Qwen
https://www.ibm.com/think/topics/gguf-versus-ggml
https://www.ibm.com/think/topics/gguf-versus-ggml
https://www.ibm.com/think/topics/ai-hallucinations
https://www.ibm.com/think/topics/ai-hallucinations
https://www.ibm.com/think/topics/llm-temperature
https://www.ibm.com/think/topics/llm-temperature
https://www.ibm.com/think/topics/ai-agents
https://www.ibm.com/think/topics/ai-agents
https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.2/docs/introduction/
https://ollama.com/search
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf
https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.1/docs/get_started/installation/
https://python.langchain.com/v0.1/docs/get_started/installation/
https://docs.langflow.org/getting-started-installation
https://docs.langflow.org/getting-started-installation
https://docs.langflow.org/
https://docs.langflow.org/
https://docs.llamaindex.ai/en/stable/#introduction
https://docs.llamaindex.ai/en/stable/#introduction
https://www.youtube.com/playlist?list=PL4HikwTaYE0H7wBxhvQqxYcKOkZ4O3zXh
https://www.youtube.com/playlist?list=PL4HikwTaYE0H7wBxhvQqxYcKOkZ4O3zXh

[MEOL24]

[0GD24]

[OGE24]

(0GS24]

[OH24]
[Ol1a25]
[OP24]

(0QC24]

[0QC25]

[OwuGh24]

[PANR24]

[QLQ24]

[QWiQ24]

[WALMcs24|

Ollama: A Deep Dive into Running Large Language Models Locally(PART-1): — by Anoop Mau-
rya — Medium. [Online]. Available: https://medium. com/@mauryaanoop3/ollama-a-deep-
dive-into-running-large-language-models-locally-part-1-0a4b70b30982 (visited on
11/18/2024).

Is it possible to have open WebUI as a chat-interface for Flowise? - FlowiseAI/Flowise - Dis-
cussion #2581. [Online]. Available: https://github.com/FlowiseAI/Flowise/discussions/
2581#discussioncomment-10607580 (visited on 01/06,/2025).
Pipelines/examples/pipelines/integrations/python_code_pipeline.py at main - open-webui/pipelines.
[Online]. Available: https://github. com/open-webui/pipelines/blob/main/examples/
pipelines/integrations/python_code_pipeline.py (visited on 01/06/2025).

Getting Started — Open WebUL [Online]. Available: https://docs.openwebui.com/getting-
started/ (visited on 11/04/2024).

Home — Open WebUI [Online]. Available: https://docs.openwebui.com/ (visited on 11/04/2024).
Ollama. [Online]. Available: https://ollama.com/ (visited on 02/03/2025).

Pipelines — Open WebUIL [Online]. Available: https://docs . openwebui . com/pipelines/
(visited on 10/30/2024).

Qwen2.5-coder:32b-instruct-¢8-0/model. [Online]. Available: https://ollama.com/library/
qwen2.5-coder:32b-instruct-q8_0/blobs/50cf95c4a2f0 (visited on 01/02/2025).

Quen2.5-coder:32b-base-¢g8-0. [Online]. Available: https://ollama.com/library/qwen2.5-
coder:32b-base-q8_0 (visited on 02/03/2025).

Open-webui/pipelines: Pipelines: Versatile, UI-Agnostic OpenAI-Compatible Plugin Framework.
[Online]. Available: https://github.com/open-webui/pipelines (visited on 01/06,/2025).

Punch_public / reana / Tutorials - GitLab. [Online]. Available: https://gitlab-p4n.aip.de/
punch_public/reana/tutorials (visited on 01/03/2025).

Local Quickstart - Qdrant. [Online]. Available: https://qdrant.tech/documentation/quickstart/
(visited on 10/30/2024).

What is Qdrant? - Qdrant. [Online]. Available: https : //qdrant . tech/documentation /
overview/ (visited on 11/06/2024).

What are large language models (LLMs)? — Microsoft Azure. [Online]. Available: https://
azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-are-large-
language-models-1lms (visited on 01/01/2025).

65

https://medium.com/@mauryaanoop3/ollama-a-deep-dive-into-running-large-language-models-locally-part-1-0a4b70b30982
https://medium.com/@mauryaanoop3/ollama-a-deep-dive-into-running-large-language-models-locally-part-1-0a4b70b30982
https://github.com/FlowiseAI/Flowise/discussions/2581#discussioncomment-10607580
https://github.com/FlowiseAI/Flowise/discussions/2581#discussioncomment-10607580
https://github.com/open-webui/pipelines/blob/main/examples/pipelines/integrations/python_code_pipeline.py
https://github.com/open-webui/pipelines/blob/main/examples/pipelines/integrations/python_code_pipeline.py
https://docs.openwebui.com/getting-started/
https://docs.openwebui.com/getting-started/
https://docs.openwebui.com/
https://ollama.com/
https://docs.openwebui.com/pipelines/
https://ollama.com/library/qwen2.5-coder:32b-instruct-q8_0/blobs/50cf95c4a2f0
https://ollama.com/library/qwen2.5-coder:32b-instruct-q8_0/blobs/50cf95c4a2f0
https://ollama.com/library/qwen2.5-coder:32b-base-q8_0
https://ollama.com/library/qwen2.5-coder:32b-base-q8_0
https://github.com/open-webui/pipelines
https://gitlab-p4n.aip.de/punch_public/reana/tutorials
https://gitlab-p4n.aip.de/punch_public/reana/tutorials
https://qdrant.tech/documentation/quickstart/
https://qdrant.tech/documentation/overview/
https://qdrant.tech/documentation/overview/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-are-large-language-models-llms
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-are-large-language-models-llms
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-are-large-language-models-llms

Appendix A

Model evaluation configurations /

question catalogue

A.1 Question Catalogue

‘ id ‘ question kind

1 Please change the following workflow, so that the output is programming
"Hello, REANA!" “ # Hello World Workflow inputs: files: -
helloworld.py workflow: type: serial specification: steps: -
environment: ’docker.io/library/python:3.10-bookworm’ kuber-
netes_memory_limit: ’100Mi’ kubernetes_job_timeout: 60 # sec-
onds commands: - python helloworld.py “ “° # helloworld.py
print("Hello, World!’) “
What is REANA general
What is REANA developed at Cern general
Give me a tutorial how to create, start, run and check and reana general
workflow

5 Give me a tutorial how to create, start, run and check and reana general
workflow with the cli

6 Please list and explain all parameters which can be used in the general

reana yaml specifications

Write an simple hello world reana yaml workflow

Write an simple hello world reana workflow, which creates differ-
ent files. Please save this files in subfolder. Therefore you can use

the mkdir command.

programming-rag

programming-rag

9 Write an reana workflow. It should take a csv file as input and | programming-rag
plot the data from the csv. The csv itself contains to parameters.
X and Y. Draw the points an return an png.

10 | Please use reana to plot an sinus function. Do this with two | programming-rag
scripts. One for data generation and another one for plotting.
Save the result as png.

11 | Create an reana workflow which accesses remote data. Use | programming-rag
this url for that ’https://s3.data.aip.de:9000/sh21pdf/
gaiaedr3_sh_input_healpixlevel5_hpno-00000{str(n)}.
fits.hdf5.txt. Notice that str(n) should be from 1 to 5

12 | Please create an reana workflow which curls an external webpage programming
and prints it with ’rich formatting to the cli. The url of the
webpage should be set by an environmental variable’

13 | Please create an rena workflow which querys some data from the programming
ATP gaia ddr3 release and plots them. Save the figure as png
14 | Create an reana workflow which sets different parameters and programming
print them to the cli
15 | Create an hello world reana workflow, which prints hello world to programming
the cli. Don’t use python! Write it in bash and directly write the

’code’ into the workflow

Table A.1.1: Question catalogue used for the model evaluation

A.2 Configurations

[Models]
list=['qwen2.5-coder:32b-instruct-q8_0', 'mistral-small:22b-instruct-2409-fpl6',
— 'llama3.1:70b', 'llama3.3:70b-instruct-q4_K_M', 'hf.co/matteogeniaccio/phi-4:F16']

[Questions]

list= [
["Please change the following workflow, so that the output is 'Hello, REANA!' \n" "~ \n#
< Hello World Workflow\n inputs:\n files:\n - helloworld.py\n
— workflow:\n type: seriall\n specification:\n steps:\n -

— environment: 'docker.io/library/python:3.10-bookworm'\n
< kubernetes_memory_limit: '100Mi'\n kubernetes_job_timeout: 60 #

< seconds\n commands: \n - python helloworld.py\n " "\n " "\n
< # helloworld.py\n print ('Hello, World!')\n """, "programming"],
["What is REANA", "general"]m

["What is REANA developed at Cern", "general"]@

II

'https://s3.data.aip.de:9000/sh21pdf/gaiaedr3_sh_input_healpixlevel5_hpno-00000{str(n)}.fits.hdf5.txt
'https://s3.data.aip.de:9000/sh21pdf/gaiaedr3_sh_input_healpixlevel5_hpno-00000{str(n)}.fits.hdf5.txt
'https://s3.data.aip.de:9000/sh21pdf/gaiaedr3_sh_input_healpixlevel5_hpno-00000{str(n)}.fits.hdf5.txt

i

["Give me a tutorial how to create, start, run and check and reana workflow",

- "general"]g

["Give me a tutorial how to create, start, run and check and reana workflow with the
— cli", "general"]B

["Please list and explain all parameters which can be used in the reana yaml

— specifications", "general"]g

["Write an simple hello world reana yaml workflow", "programming—rag"]g

["Write an simple hello world reana workflow, which creates different files. Please
— save this files in subfolder. Therefore you can use the mkdir command.",

= "programming—rag"]g

["Write an reana workflow. It should take a csv file as input and plot the data from
— the csv. The csv itself contains to parameters. X and Y. Draw the points an

< return an png.", "programming—rag”]g

["Please use reana to plot an sinus function. Do this with two scripts. One for data
— generation and another one for plotting. Save the result as png.",

- "programming—rag"]g

["Create an reana workflow which accesses remote data. Use this url for that

— 'https://s3.data.aip.de:9000/sh21pdf/gaiaedr3_sh_input_healpixlevel5_hpno-00000{s
< tr(n)}.fits.hdf5.txt'. Notice that str(n) should be from 1 to 5",

= "programming—rag"]g

["Please create an reana workflow which curls an external webpage and prints it with
— 'rich formatting to the cli. The url of the webpage should be set by an

— environmental variable'", "programming"]g

["Please create an rena workflow which querys some data from the AIP gaia ddr3

— release and plots them. Save the figure as png", "programming"]g

["Create an reana workflow which sets different parameters and print them to the

- cli", "programming“]g

["Create an hello world reana workflow, which prints hello world to the cli. Don't
— use python! Write it in bash and directly write the 'code' into the workflow",

— "programming"]

class = ["general", "programming", "programming-rag"]

Figure A.2.1: Catalogue of questions and configurations for model evaluation

III

Appendix B

Model evaluation

B.1 Scripts for Model Evaluation Without RAG

import requests
import psycopg2

import toml

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

config = toml.load('model_evaluation.toml"')

con = psycopg?2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

cur = con.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS model_evaluation (id SERIAL PRIMARY KEY, response
— VARCHAR, question VARCHAR, model VARCHAR, review INTEGER, class VARCHAR);")

con.commit ()

for j in config['Models']['list']:
for i in config['Questions']['list']:
print(f'Model: {j} Question: {i[0]}')

1Y

url = 'http://141.33.165.24:11434/api/generate’
data = {
"model": j,
"stream" : False,
"prompt": f"{i[0]}",
"options": {
"temperature": 0.3
1,
}

response = requests.post(url, json=data)

print (response)

cur.execute ("INSERT INTO model_evaluation (response, question, model, review,

— class) VALUES (%s, %s, %s, NULL, %s)", (response.json()['response']l, i[0], j,
- if11)

con.commit ()

con.close()

Figure B.1.1: Script to make request directly to Ollama

import psycopg2
from rich.console import Console

from rich.markdown import Markdown

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read().strip()

console = Console()

con = psycopg2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

cur = con.cursor()

cur.execute ("SELECT COUNT(*) FROM model_evaluation;")

number_of_records = cur.fetchone() [0]

is_true = True
console.clear()
while is_true:
console.clear()
console.print ("""
This is a small command line tool to review the generated responses.
— Please answer the following questions with y or n. y for true and n
— for false. Did you understand?
In the following you will see a question and a the response.
)
user_input = input(":")
if user_input in ["true", "1", "yes", "y", "t"]:
is_true = False
"

elif user_input in ["false", "O0", "no", "n", "f"]:

is_true = True

for i in range(number_of_records):
console.clear()
console.print (Markdown (f"### Question:\n"))
cur.execute(f"SELECT question FROM model_evaluation WHERE id={i+1};")

console.print (Markdown (cur.fetchone() [0]))

console.print("\n" * 4)

console.print (Markdown (f"### Response: \n"))

cur.execute (£"SELECT response FROM model_evaluation WHERE id={i+1};")
console.print (Markdown (cur.fetchone() [0]))

user_input = int(input(":").strip() .lower())

cur.execute (f"UPDATE model_evaluation SET review={user_input} WHERE id={i+1};")
con.commit ()

console.clear()

con.close()

Figure B.1.2: Script to evaluate direct Ollama requests

VI

import pandas as pd

import psycopg2

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

data = [['id', 'question', 'model', 'review']]

con = psycopg?2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

cur = con.cursor()
cur.execute ("SELECT COUNT(*) FROM model_evaluation;")

for i in range(O, cur.fetchone() [0]):
cur.execute ("SELECT * FROM model_evaluation WHERE id=Y%s;", (i+1,))
current = cur.fetchone()
datatmp = [current[0], current([2], current[3], current[4]]

data.append(datatmp)
df = pd.DataFrame(datal[1:], columns=datal0])
file = open("model_evaluation_table.md", "w")

file.write(df.to_markdown(index=False))
file.close()

Figure B.1.3: Script to generate evaluation markdown table of direct Ollama calls

B.2 Analyses

1

Inotice that the original file type was an jupyter notebook; the notebook was formatted to an python file to format and show
it correctly in this appendix

VII

4% [markdown]
Ollama model evaluation analyses

- thts notebook shows some analyses for the ollama evaluations

5%

amport libraries

import toml

import psycopg2

import matplotlib.pyplot as plt

import numpy as np

0%

load configurations

config = toml.load('model_evaluation.toml')

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

file.close()

0%

Connect to the database

con = psycopg?2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

)

cur = con.cursor()

#

get the number of evaluations for each class

review_list = []

for i in range(0,3):
cur.execute (f"SELECT COUNT(*) FROM model_evaluation WHERE review={il};")
review_list.append(cur.fetchone() [0])

labels = ['bad', 'average', 'great']

create the plot
plt.bar(labels, review_list, color=['r', 'y', 'g'l)

VIII

plt.title('Model evaluation by review')

plt.ylabel('Number of evaluations')

plt.figtext (0.5, 0.02, "without RAG", wrap=True, horizontalalignment='center', fontsize=8)
#plt.show()

plt.savefig('model_evaluation_by_review.png')

1%

create empty and standard lists
review_list = [[1,[],[]1]

colors_list = ['r', 'y', 'g']

labels_list = ['bad', 'average', 'great']

run sql quries to create lists for the bar chart (bad/average/qgreat per model)
for i in range(0,3):
tmp_list = []
for model in configl['Models']['list']:
cur.execute (£"SELECT COUNT(*) FROM model_evaluation WHERE model='{model}'
— AND review={il};")
eval = cur.fetchone() [0]
if(eval == 0):
eval = 0.1
tmp_list.append(eval)

review_list[i] = tmp_list

set the width of the bar and create subplots
barWidth = 0.275
fig, ax = plt.subplots(figsize =(9, 10))

plot the bars by grouping them by review

br = np.arange(len(config["Models"] ["1ist"]))

for i in range(0, len(review_list)):
plt.barh(br, review_list[i], color =colors_list[i], edgecolor ='grey',
— label=labels_list[i], height=barWidth)
br = [x + barWidth for x in br]

add labels and title

plt.xlabel('Number of answers', fontsize = 12)
plt.ylabel('Model', fontsize = 12)

IX

plt.yticks([r + barWidth for r in range(len(config["Models"]["1list"]))],
— config["Models"]["1list"], fontsize = 8)
plt.title('Model evaluation by model')

ax.annotate('without RAG',xy = (0.87, 0.007),xycoords='axes

— fraction',ha='left',va="center",fontsize=10)

add legend + show
plt.legend()

plt.show()

0%

create empty and standard lists
review_list0 = [[1,[], 1]
review_listl = [[1,[],[]1]
review_list2 = [[],[],[1]

colors_list = ['r', 'y', 'g']
colors_list2 = ['lightsalmon', 'khaki', 'limegreen']

colors_list3 = ['tomato', 'lemonchiffon', 'lime']

labels_list = ['bad c=0', 'average c=0', 'great c=0']
labels_list2
labels_list3

['bad c=1', 'average c=1', 'great c=1']

['bad c=2', 'average c=2', 'great c=2']

run sql quries to create lists for the bar chart (bad/average/qgreat per model)
for i in range(0, 3):
tmp_list = []
for model in config['Models']['list']:
cur.execute (f"SELECT COUNT(*) FROM model_evaluation WHERE model='{modell}'
— AND review={i} AND class='general';")
eval = cur.fetchone() [0]
if(eval == 0):
eval = 0.1
tmp_list.append(eval)
review_listO[i] = tmp_list
tmp_list = []
for model in config['Models']['list']:
cur.execute (f"SELECT COUNT(*) FROM model_evaluation WHERE model='{model}'
— AND review={i} AND class='programming';")

eval = cur.fetchone() [0]

if(eval == 0):
eval = 0.1
tmp_list.append(eval)
review_list1[i] = tmp_list
tmp_list = []
for model in config['Models']['list']:

cur.execute (f"SELECT COUNT(*) FROM model_evaluation WHERE model='{modell}'

— AND review={i} AND class='programming-rag';")
eval = cur.fetchone() [0]
if(eval == 0):
eval = 0.1
tmp_list.append(eval)

review_list2[i] = tmp_list

set the width of the bar and create subplots
barWidth = 0.275
fig, ax = plt.subplots(figsize =(9, 10))

plot the bars by grouping them by review

br = np.arange(len(config["Models"] ["1ist"]))

for i in range(0, len(review_list0)):
plt.barh(br, review_1listO[i], color =colors_list[i], edgecolor ='grey',
— label=labels_list[i], height=barWidth)
plt.barh(br, review_list1[i], color =colors_list2[i], edgecolor ='grey',
— label=labels_list2[i], height=barWidth, left=review_listO[i])
plt.barh(br, review_list2[i], color =colors_list3[i], edgecolor ='grey',
< label=labels_list3[i], height=barWidth, left=[sum(x) for x in
— zip(review_listO[i], review_list1[i])])
br = [x + barWidth for x in br]

add labels and title

plt.xlabel('Number of answers', fontsize = 12)

plt.ylabel('Model', fontsize = 12)

plt.yticks([r + barWidth for r in range(len(config["Models"]["list"]))],
— config["Models"]["1list"], fontsize = 8)

plt.title('Model evaluation by model')

XI

ax.annotate('Class O are general questions / tasks\nClass 1 are questions / tasks to

— create yaml files and write code\n Class 2 are questions / tasks to create yaml files
— and write code with provided information (RAG)',xy = (1.0, -0.1),xycoords='axes

. fraction',ha='right',va="center”,fontsize=6)

ax.annotate('Temperature is 0.3\n Notice that in that point no context is given(no

— RAG)',xy = (0, -0.1),xycoords='axes fraction',ha='left',va="center",fontsize=6)
ax.annotate('without RAG',xy = (0.87, 0.007),xycoords='axes

— fraction',ha='left',va="center",fontsize=10)

add legend + show
plt.legend()
plt.show()

5%

cur.close()

Figure B.2.1: Script for analysation of direct Ollama calls

B.3 Evaluation Table

‘id ‘Inodel question ‘revmmf‘
1 | opencoder:8b-instruct-fpl6 1 2
2 | opencoder:8b-instruct-fp16 2 2
3 | opencoder:8b-instruct-fp16 3 2
4 | opencoder:8b-instruct-fpl6 4 1
5 | opencoder:8b-instruct-fp16 5 0
6 | opencoder:8b-instruct-fp16 6 1
7 | opencoder:8b-instruct-fp16 7 1
8 | opencoder:8b-instruct-fp16 8 1
9 | opencoder:8b-instruct-fp16 9 1
10 | opencoder:8b-instruct-fp16 10 0
11 | opencoder:8b-instruct-fpl6 11 0
12 | opencoder:8b-instruct-fpl6 12 0

2The questions are replaced by the ID given in the questions overview. The responses are not shown, due to formatting reasons.
They are accessible in the GitHub repository.

XII

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

opencoder:8b-instruct-fpl6
opencoder:8b-instruct-fpl6
opencoder:8b-instruct-fpl6
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8-0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8_0
qwen2.5-coder:32b-instruct-q8-0
qwen2.5-coder:32b-instruct-q8_0
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

XIII

e
Ut o W

© 00 g O Ut e W N -

—= = = s e
T W NN = O

© 00 g O Ut ke W NN -

e e e e
UL = W o = O

S O e W N =

N OO = O N O O O O O OO O QONDNDDINHFDNODNIDNINIDNDI NI DNDEFNDDNDDNDDNDNR=R —~ O

52
93
54
55
o6
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
()
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b
llamagd.3:70b-instruct-q4_K_M
llamagd.3:70b-instruct-q4_K_M
llamag.3:70b-instruct-q4_K_M
llama3.3:70b-instruct-q4_-K_M
llamagd.3:70b-instruct-q4_K_M
llamad.3:70b-instruct-q4_K_M
llamad.3:70b-instruct-q4_K_M
llamag3.3:70b-instruct-q4_-K_M
llamagd.3:70b-instruct-q4_K_M
llama3.3:70b-instruct-q4_K_M
llama3.3:70b-instruct-q4_K_M
llamag3.3:70b-instruct-q4_K_M
llamagd.3:70b-instruct-q4_K_M
llamag.3:70b-instruct-q4_K_M
llama3.3:70b-instruct-q4_-K_M
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16

e e e e
T = W N = O

© 00 N O Ot = W N

e e e e
T = W N~ O

© 00 N O Ot = W N

e e e e
T = W N = O

H O O O O —~ O R FH H O O NDNDDINEFENO R R~ FP FEHFFEFEFEFOOOIDNIDINIDNOODODOOOO OO OO

XIV

Table B.3.1: Table of Rating of Direct Ollama Calls

B.4 Scripts for Model Evaluation With RAG

import requests
from langchain_community.document_loaders import GitLoader

import io

pushes wvecotrized data to FlowiseAI conencted to (drant
def pushToFlowise(file_like_object, file_name):
API_URL = '"http://141.33.165.24:8000/api/v1/vector/upsert/ac04a85d-3a13-409c-bdeb-dc
— d40b9ef742"
use form data to upload files
form_data = {
"files": (file_name, file_like_object)
}
body_data = {
}

def query(form_data, body_data):
response = requests.post(API_URL, files=form_data, data=body_data)

return response.json()

query(form_data, body_data)

load yaml files from git repo
loader =
— GitLoader(repo_path="/home/tom/Documents/HOST/Bachelorarbeit/reana-tutorials-github")
data = loader.load()
for i in range(len(data)):
file_data = data[i] .metadata.get('source').split('/")
if('.yaml' in file_data[len(file_data)-1]):
file_like_object = io.StringIO(datali].page_content)
file_name = ""
for j in range(len(file_data)-1):

file_name += file_datal[j] + '-'

pushToFlowise(file_like_object, file_name)

XV

print("Pushed: " + datal[i] .metadata.get('source'))

Figure B.4.1: Script to vectorize and upload yaml files to the vector store

import requests

import psycopg2

import toml

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read().strip()

config = toml.load('model_evaluation.toml')

con = psycopg2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

API_URL =
< "http://141.33.165.24:8000/api/v1l/prediction/6b74c5bd-bcf9-4a29-824f-06d0028cce74"

def query(payload):
response = requests.post(API_URL, json=payload)

return response.json()

cur = con.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS model_evaluation_rag (id SERIAL PRIMARY KEY,
< response VARCHAR, question VARCHAR, model VARCHAR, review INTEGER, class VARCHAR);")

con.commit ()

for j in config['Models']['list']:
for i in config['Questions']['list']:
print(f'Model: {j} Question: {i[0]}")
output = query({
"question": i[0],
"overrideConfig": {

"modelName": j,

XVI

b

response = query(output).get('text')

print (response)

print("Starting upload to db")

cur.execute ("INSERT INTO model_evaluation_rag (response, question, model, review,
— class) VALUES (%s, %s, %s, NULL, %s)", (respomse, i[0], j, i[1]))

con.commit ()

con.close()

Figure B.4.2: Script to make request to FlowiseAI RAG implementation

import psycopg?2
from rich.console import Console

from rich.markdown import Markdown

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

console = Console()

con = psycopg?2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

cur = con.cursor()
cur.execute("SELECT COUNT(*) FROM model_evaluation_rag;")

number_of_records = cur.fetchone() [0]

is_true = True
console.clear()
while is_true:
console.clear()
console.print ("""
This is a small command line tool to review the generated responses.
— Please answer the following questions with y or n. y for true and n

— for false. Did you understand?

XVII

In the following you will see a question and a the response.
nn II)
user_input = input(":")
if user_input in ["true", "1", "yes", "y", "t"]:
is_true = False
n

elif user_input in ["false", "0", "no", "n", "f"]:

is_true = True

for i in range(number_of_records):
console.clear()
console.print (Markdown (f"### Question:\n"))
cur.execute(f"SELECT question FROM model_evaluation_rag WHERE id={i+1};")
console.print (Markdown (cur.fetchone() [0]))

console.print("\n" * 4)

console.print (Markdown (f"### Response: \n"))

cur.execute(f"SELECT response FROM model_evaluation_rag WHERE id={i+1};")
console.print (Markdown(cur.fetchone() [0]))

user_input = int(input(":").strip() .lower())

cur.execute (f"UPDATE model_evaluation_rag SET review={user_input} WHERE id={i+1};")
con.commit ()

console.clear()

con.close()

Figure B.4.3: Script to evaluate requests to FlowiseAI RAG implementation

import pandas as pd

import psycopg2

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

data = [['id', 'question', 'model', 'review']]

con = psycopg2.connect(

dbname="model_evaluation",

XVIII

user="local",
password=passwd,
host="141.33.165.24"

cur = con.cursor()
cur.execute("SELECT COUNT (*) FROM model_evaluation_rag;")

for i in range(O, cur.fetchone() [0]):
cur.execute("SELECT * FROM model_evaluation_rag WHERE id=7s;", (i+1,))
current = cur.fetchone()
datatmp = [current[0], current[2], current[3], current[4]]

data.append(datatmp)
df = pd.DataFrame(datal[1:], columns=datal0])
file = open("model_evaluation_table_rag.md", "w")

file.write(df.to_markdown(index=False))
file.close()

Figure B.4.4: Script to generate evaluation markdown table of FlowiseAl RAG implementation calls

B.5 Analyses with RAG

4% [markdown]
Ollama model evaluation analyses

- thts notebook shows some analyses for the ollama evaluations

7%

tmport libraries

import toml

import psycopg2

import matplotlib.pyplot as plt

import numpy as np

5k

3notice that the original file type was an jupyter notebook; the notebook was formatted to an python file to format and show
it correctly in this appendix

XIX

load configurations

config = toml.load('model_evaluation.toml')

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

file.close()

0%

Connect to the database

con = psycopg?2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

)

cur = con.cursor()

0

get the number of evaluations for each class

review_list = []

for i in range(0,3):
cur.execute(f"SELECT COUNT(*) FROM model_evaluation_rag WHERE review={il};")
review_list.append(cur.fetchone() [0])

labels = ['bad', 'average', 'great']

create the plot

plt.bar(labels, review_list, color=['r', 'y', 'g'l)

plt.title('Model evaluation by review')

plt.ylabel('Number of evaluations')

plt.figtext(0.5, 0.02, "with RAG", wrap=True, horizontalalignment='center', fontsize=8)
#plt.show()

plt.savefig('model_evaluation_rag.png',format='png', bbox_inches='tight')

%
create empty and standard lists
review_list = [[1,[1,[]]

v 'g'l
['bad', 'average', 'great']

colors_list = ['r',
labels_list

run sql quries to create lists for the bar chart (bad/average/qreat per model)

XX

for i in range(0,3):

tmp_list = []

for model in config['Models']['list']:
cur.execute (£"SELECT COUNT(*) FROM model_evaluation_rag WHERE
— model='{model}' AND review={i};")
eval = cur.fetchone() [0]
if(eval == 0):

eval = 0.1

tmp_list.append(eval)

review_list[i] = tmp_list

set the width of the bar and create subplots
barWidth = 0.275
fig, ax = plt.subplots(figsize =(8, 10))

plot the bars by grouping them by review

br = np.arange(len(config["Models"] ["1ist"]))

for i in range(0, len(review_list)):
plt.barh(br, review_list[i], color =colors_list[i], edgecolor ='grey',
< label=labels_list[i], height=barWidth)
br = [x + barWidth for x in br]

add labels and title

plt.xlabel('Number of answers', fontsize = 12)

plt.ylabel('Model', fontsize = 12)

plt.yticks([r + barWidth for r in range(len(config["Models"]["list"]))],
— config["Models"]["1list"], fontsize = 8)

plt.title('Model evaluation by model')

ax.annotate('with RAG',xy = (0.89, 0.007),xycoords="'axes

— fraction',ha='left',va="center",fontsize=10)

add legend + show

plt.legend ()

#plt.show()

plt.savefig('model_evaluation_by_model.png',format='png', bbox_inches='tight')

5k

create empty and standard lists

XXI

(01,0, 01
(0,0, 0in1
(01,0, 01
colors_list = ['r', 'y', 'g']

review_1listO

review_listl

review_list2

colors_list2 ['lightsalmon', 'khaki', 'limegreen']
colors_list3 = ['tomato', 'lemonchiffon', 'lime']

labels_list = ['bad c=0', 'average c=0', 'great c=0']
labels_list2

labels_list3 = ['bad c=2', 'average c=2', 'great c=2']

['bad c=1', 'average c=1', 'great c=1']

run sql quries to create lists for the bar chart (bad/average/qgreat per model)
for i in range(0, 3):
tmp_list = []
for model in config['Models']['list']:
cur.execute (£"SELECT COUNT(*) FROM model_evaluation_rag WHERE
— model='{model}' AND review={i} AND class='general';")
eval = cur.fetchone() [0]
if(eval == 0):
eval = 0.1
tmp_list.append(eval)
review_listO0[i] = tmp_list
tmp_list = []
for model in config['Models']['list']:
cur.execute (£"SELECT COUNT(*) FROM model_evaluation_rag WHERE
— model='{model}' AND review={i} AND class='programming';")
eval = cur.fetchone() [0]
if(eval == 0):
eval = 0.1
tmp_list.append(eval)
review_list1[i] = tmp_list
tmp_list = []
for model in config['Models']['list']:
cur.execute (£"SELECT COUNT(*) FROM model_evaluation_rag WHERE
— model='{model}' AND review={i} AND class='programming-rag';")
eval = cur.fetchone() [0]
if(eval == 0):
eval = 0.1
tmp_list.append(eval)

review_list2[i] = tmp_list

XXII

set the width of the bar and create subplots
barWidth = 0.275
fig, ax = plt.subplots(figsize =(9, 10))

plot the bars by grouping them by review

br = np.arange(len(config["Models"]["1ist"]))

for i in range(0, len(review_list0)):
plt.barh(br, review_listO[i], color =colors_list[i], edgecolor ='grey',
— label=labels_list[i], height=barWidth)
plt.barh(br, review_list1[i], color =colors_list2[i], edgecolor ='grey',
— label=labels_list2[i], height=barWidth, left=review_listO[i])
plt.barh(br, review_list2[i], color =colors_list3[i], edgecolor ='grey',
— label=labels_list3[i], height=barWidth, left=[sum(x) for x in
— zip(review_listO[i], review_list1[i])])
br = [x + barWidth for x in br]

add labels and title

plt.xlabel('Number of answers', fontsize = 12)

plt.ylabel('Model', fontsize = 12)

plt.yticks([r + barWidth for r in range(len(config["Models"]["list"]))],
— config["Models"] ["1ist"], fontsize = 8)

plt.title('Model evaluation by model')

ax.annotate('Class O are general questions / tasks\nClass 1 are questions / tasks to

— create yaml files and write code\n Class 2 are questions / tasks to create yaml files
— and write code with provided information (RAG)',xy = (1.0, -0.1),xycoords='axes

- fraction',ha='right',va="center",fontsize=6)

ax.annotate('Temperature is 0.3',xy = (0, -0.1),xycoords='axes

— fraction',ha='left',va="center",fontsize=6)

ax.annotate('with RAG',xy = (0.9, 0.007),xycoords='axes

— fraction',ha='left',va="center",fontsize=10)

add legend + show

plt.legend()

#plt.show()

plt.savefig('model_evaluation_by_model_detailed.png',format='png', bbox_inches='tight')

XXIII

5k

cur.close()

Figure B.5.1: Script for analysation of calls to FlowiseAl RAG implementation

B.6 Evaluation Table

4

‘ id ‘ model question ‘ review ‘
1 | qwen2.5-coder:32b-instruct-q8.-0 1 2
2 | qwen2.5-coder:32b-instruct-q8_0 2 2
3 | gqwen2.5-coder:32b-instruct-q8_0 3 2
4 | qwen2.5-coder:32b-instruct-q8_0 4 2
5 | qwen2.5-coder:32b-instruct-q8-0 5 2
6 | gqwen2.5-coder:32b-instruct-q8_0 6 2
7 | qwen2.5-coder:32b-instruct-q8_0 7 2
8 | qwen2.5-coder:32b-instruct-q8-0 8 2
9 | qwen2.5-coder:32b-instruct-q8_0 9 2
10 | qwen2.5-coder:32b-instruct-q8_0 10 2
11 | gwen2.5-coder:32b-instruct-q8_0 11 2
12 | gqwen2.5-coder:32b-instruct-q8-0 12 1
13 | gwen2.5-coder:32b-instruct-q8_0 13 1
14 | qwen2.5-coder:32b-instruct-q8_0 14 1
15 | qwen2.5-coder:32b-instruct-q8_0 15 2
16 | mistral-small:22b-instruct-2409-fp16 1 2
17 | mistral-small:22b-instruct-2409-fp16 2 2
18 | mistral-small:22b-instruct-2409-fp16 3 2
19 | mistral-small:22b-instruct-2409-fp16 4 0
20 | mistral-small:22b-instruct-2409-fp16 5 1
21 | mistral-small:22b-instruct-2409-fp16 6 1
22 | mistral-small:22b-instruct-2409-fp16 7 1
23 | mistral-small:22b-instruct-2409-fp16 8 1
24 | mistral-small:22b-instruct-2409-fp16 9 1
25 | mistral-small:22b-instruct-2409-fp16 10 2
26 | mistral-small:22b-instruct-2409-fp16 11 1

4The questions are replaced by the ID given in the questions overview. The responses are not shown, due to formatting reasons.
They are accessible in the GitHub repository.

XXIV

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
95
56
o7
o8
99
60
61
62
63
64
65

mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
mistral-small:22b-instruct-2409-fp16
llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b

llama3.1:70b
llama3.3:70b-instruct-q4_K_M
llamag3.3:70b-instruct-q4_K_M
llamagd.3:70b-instruct-q4_K_M
llamag.3:70b-instruct-q4_K_M
llama3.3:70b-instruct-q4_-K_M
llamagd.3:70b-instruct-q4_K_M
llamagd.3:70b-instruct-q4_K_M
llamag.3:70b-instruct-q4_K_M
llama3.3:70b-instruct-q4_-K_M
llamagd.3:70b-instruct-q4_K_M
llamad.3:70b-instruct-q4_K_M
llamad.3:70b-instruct-q4_K_M
llamag3.3:70b-instruct-q4_K_M
llamagd.3:70b-instruct-q4_K_M
llama3.3:70b-instruct-q4_K_M
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16
hf.co/matteogeniaccio/phi-4:F16

XXV

—_ = = =
UL W N

© 00 N O U kW N

— = = = = =
UL = W D = O

© 00 N O O ke W N

e e e
UL = W D = O

T s W N =

o NN NN NN =R =2 OO NN NO R R NN NN RN RN =2 O NN NN RO RN

66 | hf.co/matteogeniaccio/phi-4:F16 6 1
67 | hf.co/matteogeniaccio/phi-4:F16 7 1
68 | hf.co/matteogeniaccio/phi-4:F16 8 2
69 | hf.co/matteogeniaccio/phi-4:F16 9 2
70 | hf.co/matteogeniaccio/phi-4:F16 10 2
71 | hf.co/matteogeniaccio/phi-4:F16 11 0
72 | hf.co/matteogeniaccio/phi-4:F16 12 1
73 | hf.co/matteogeniaccio/phi-4:F16 13 2
74 | hf.co/matteogeniaccio/phi-4:F16 14 0
75 | hf.co/matteogeniaccio/phi-4:F16 15 2

Table B.6.1: Table of Rating of FlowiseAI RAG Implementation Calls

B.7 Final Workflow evaluation

import requests
import psycopg2

import toml

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

config = toml.load('model_evaluation.toml')

con = psycopg?2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

API_URL =
— "http://141.33.165.24:8000/api/v1/prediction/bddddad9-3b09-44f1-af80-e6788a58d906"

def query(payload):
response = requests.post(API_URL, json=payload)

return response.json()

XXVI

cur = con.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS model_evaluation_workflow (id SERIAL PRIMARY KEY,
— response VARCHAR, question VARCHAR, review INTEGER, class VARCHAR);")

con.commit ()

for i in config['Questions']['list']:
print (f'Question: {i[0]}')
output = query({
"question": i[0]

b

response = query(output).get('text')

print (response)

print("Starting upload to db")

cur.execute("INSERT INTO model_evaluation_workflow (response, question , review,
< class) VALUES (%s, %s, NULL, %s)", (response, i[0], i[1]1))

con.commit ()

con.close()

Figure B.7.1: Request script

import psycopg2
from rich.console import Console

from rich.markdown import Markdown

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")
passwd = file.read() .strip()

console = Console()

con = psycopg2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

cur = con.cursor()
cur.execute ("SELECT COUNT(*) FROM model_evaluation_workflow;")

number_of_records = cur.fetchone() [0]

XXVII

is_true = True
console.clear()
while is_true:
console.clear()
console.print ("""
This is a small command line tool to review the generated responses.
— Please answer the following questions with y or n. y for true and n
— for false. Did you understand?
In the following you will see a question and a the response.
b

user_input = input(":")

if user_input in ["true", "1", "yes y"', "t"]:
is_true = False
elif user_input in ["false", "0", "mo", "n", "f"]:

is_true = True

for i in range(number_of_records):
console.clear()
console.print (Markdown (f"### Question:\n"))
cur.execute(f"SELECT question FROM model_evaluation_workflow WHERE id={i+1};")
console.print (Markdown (cur.fetchone() [0]))

console.print("\n" * 4)

console.print (Markdown (f"### Response: \n"))

cur.execute(f"SELECT response FROM model_evaluation_workflow WHERE id={i+1};")
console.print (Markdown (cur.fetchone() [0]))

user_input = int(input(":").strip().lower())

cur.execute (f"UPDATE model_evaluation_workflow SET review={user_input} WHERE
o id={i+1};")

con.commit ()

console.clear()

con.close()

Figure B.7.2: Evaluation script

import pandas as pd

XXVIII

import psycopg2

file = open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass",

passwd = file.read().strip()

data = [['id', 'question', 'review']]

con = psycopg?2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

cur = con.cursor()
cur.execute("SELECT COUNT(*) FROM model_evaluation_workflow;")

for i in range(0, cur.fetchone() [0]):

llrll)

cur.execute("SELECT * FROM model_evaluation_rag WHERE id=Ys;", (i+1,))

current = cur.fetchone()
datatmp = [current[0], current[2], current[3]]

data.append(datatmp)
df = pd.DataFrame(datal[l:], columns=datal0])
file = open("model_evaluation_table_workflow.md", "w")

file.write(df.to_markdown(index=False))
file.close()

Figure B.7.3: Table generation script

B.8 Analyses (final)

4% [markdoun]

Ollama model evaluation analyses

- this notebook shows some analyses for the ollama evaluations

XXIX

7%

amport libraries

import toml

import psycopg2

import matplotlib.pyplot as plt

import numpy as np

0%

load configurations

config = toml.load('model_evaluation.toml')
file
passwd = file.read().strip()
file.close()

open("/home/tom/Documents/AIP/Bachelorarbeit/creds/psql.pass", "r")

0%

Connect to the database

con = psycopg2.connect(
dbname="model_evaluation",
user="local",
password=passwd,
host="141.33.165.24"

)

cur = con.cursor()

5%
get the number of evaluations for each class
review_list = []
for i in range(0,3):
cur.execute(£"SELECT COUNT(*) FROM model_evaluation_workflow WHERE review={i};")
review_list.append(cur.fetchone() [0])
if (review_list[i] == 0):
review_list[i] = 0.1

labels = ['bad', 'average', 'great']

create the plot

plt.bar(labels, review_list, color=['r', 'y', 'g'l)
plt.title('Workflow call')

plt.ylabel('Number of evaluations')

#plt.show()

XXX

plt.savefig('model_evaluation_workflow.png',format='png', bbox_inches='tight')

%

get the number of evaluations for each class

review_list = []

for i in range(0,3):
cur.execute (f"SELECT COUNT(*) FROM model_evaluation WHERE review={i} AND
— model='qwen2.5-coder:32b-instruct-q8_0';")
review_list.append(cur.fetchone() [0])

labels = ['bad', 'average', 'great']

create the plot

plt.bar(labels, review_list, color=['r', 'y', 'g'l)

plt.title('Direct call')

plt.ylabel('Number of evaluations')

#plt.show()

plt.savefig('model_evaluation.png',format='png', bbox_inches='tight')

5k

cur.close()

Figure B.8.1: Analysation script

Snotice that the original file type was an jupyter notebook; the notebook was formatted to an python file to format and show
it correctly in this appendix

XXXI

B.9 Evaluation Table

Table B.9.1: Workflow evaluation table

‘ id ‘ question ‘ review ‘

1 1 2
2 2 2
3 3 2
4 4 2
)) 1
6 6 2
7 7 2
8 8 2
9 9 2
10 10 2
11 11 2
12 12 2
13 13 2
14 14 1
15 15 1

B.10 Evaluation Tables

‘ ‘ bad ‘ average ‘ great ‘

Without RAG | 33 18 24
With RAG 8 27 40

Table B.10.1: Comparison of the model performance summarized by rating to illustrate the impact of RAG.

‘ ‘ bad ‘ average ‘ great ‘

qwen2.5-coder:32b-instruct-q8_0 1 2 12
mistral-small:22b-instruct-2409-fp16 9 3 3
llamad.1:70b 12 1 2
llama3.3:70b-instruct-q4_K_M 4 7 4
hf.co/matteogeniaccio/phi-4:F16 7 5 3

Table B.10.2: Model performance for LLM models without RAG.

XXXII

‘ bad ‘ average ‘ great ‘

qwen2.5-coder:32b-instruct-q8_0 0 3 12
mistral-small:22b-instruct-2409-fp16 2 8 5
llama3.1:70b 1 8
llama3.3:70b-instruct-q4_K_M 3 5 7
hf.co/matteogeniaccio/phi-4:F16 2 8
Table B.10.3: Model performance for LLM models with RAG.

\ model | bad | average | great | kind |
qwen2.5-coder:32b-instruct-q8-0 0 1 4 ‘
mistral-small:22b-instruct-2409-fp16 2 1 2 =
llama3.1:70b 3 1 1 P
llama3.3:70b-instruct-q4_K_M 3 0 2 %
hf.co/matteogeniaccio/phi-4:F16 2 1 2
qwen2.5-coder:32b-instruct-q8_0 1 1 3 0
mistral-small:22b-instruct-2409-fp16 4 0 1 E
llama3.1:70b 4 0 1 El
llama3.3:70b-instruct-q4_K_M 1 2 2 @
hf.co/matteogeniaccio/phi-4:F16 3 1 1 &
qwen2.5-coder:32b-instruct-q8_0 0 0) &
mistral-small:22b-instruct-2409-fp16 3 2 0 on
llama3.1:70b 5 0 0 E
llama3.3:70b-instruct-q4_K_M 0) 0 £
hf.co/matteogeniaccio/phi-4:F16 2 3 0 g

Table B.10.4: Model performance for LLM models without RAG by task categories.

| bad | average | great | kind |

qwen2.5-coder:32b-instruct-q8-0 0 0) ‘
mistral-small:22b-instruct-2409-fp16 1 2 2 =
llama3.1:70b 1 2 2 g
llama3.3:70b-instruct-q4_K_M 1 2 2 %

hf.co/matteogeniaccio/phi-4:F16 0 3 2

qwen2.5-coder:32b-instruct-q8_0 0 3 2 a0
mistral-small:22b-instruct-2409-fp16 1 2 2 E
llama3.1:70b 0 2 3 g
llama3.3:70b-instruct-q4_K_M 0 1 4 @
hf.co/matteogeniaccio/phi-4:F16 1 1 3 =
qwen2.5-coder:32b-instruct-q8_0 0 0) &
mistral-small:22b-instruct-2409-fp16 0 4 1 "E"
llama3.1:70b 0 2 3 E
llama3.3:70b-instruct-q4_K_M 2 2 1 g
hf.co/matteogeniaccio/phi-4:F16 1 1 3 g

Table B.10.5: Model performance for LLM models with RAG by task categories.

XXXIII

Appendix C

Docker

C.1 Docker compose files

based on: https://www.docker.com/blog/how-to-use-the-postgres-docker-official-image/
services:
postgres:
image: postgres:alpine
restart: always
environment:
- POSTGRES_USER=**x*x%
— POSTGRES_PASSWORD=****
- POSTGRES_DB=flowise
ports:
- "b5432:5432"
volumes:

- /root/docker-data/postgres:/var/lib/postgresql/data

Figure C.1.1: Postgres

source: https://github.com/open-webui/open-webui/blob/main/docker-compose.yaml
services:
open-webui:
image: ghcr.io/open-webui/open-webui:${WEBUI_DOCKER_TAG-main}
container_name: open-webui
volumes:
- /root/docker-data/openwebui:/app/backend/data
ports:
- ${0OPEN_WEBUI_PORT-3000}:8080

XXXIV

environment:

- 'OLLAMA_BASE_URL=http://ollama:11434'
extra_hosts:

- host.docker.internal:host-gateway
restart: unless-stopped

pipelines-openwebui:

build:

context:

dockerfile: Dockerfile
image: openwebui-pipelines:self
ports:

- 9099:9099
environment:

- REANA_SERVER_URL=https://reana-p4n.aip.de
volumes:

- /root/docker-data/pipelines-openwebui:/app/pipelines
extra_hosts:

- host.docker.internal:host-gateway

restart: always

Figure C.1.2: Open WebUI

source: https://github.com/FlowiseAI/Flowise/blob/main/docker/docker-compose.yml

version: '3.1'

services:
flowise:

image: flowiseai/flowise

restart: always

environment:
- PORT=${PORT?
- CORS_ORIGINS=${CORS_ORIGINS}
- IFRAME_ORIGINS=${IFRAME_ORIGINS}
- FLOWISE_USERNAME=${FLOWISE_USERNAME}
- FLOWISE_PASSWORD=${FLOWISE_PASSWORD}
- FLOWISE_FILE_SIZE_LIMIT=${FLOWISE_FILE_SIZE_LIMIT}
- DEBUG=${DEBUG}
- DATABASE_PATH=${DATABASE_PATH}
- DATABASE_TYPE=${DATABASE_TYPE}

XXXV

- DATABASE_PORT=${DATABASE_PORT}

- DATABASE_HOST=${DATABASE_HOST}

- DATABASE_NAME=${DATABASE_NAME}

- DATABASE_USER=${DATABASE_USER}

- DATABASE_PASSWORD=${DATABASE_PASSWORD}

- DATABASE_SSL=${DATABASE_SSL}

- DATABASE_SSL_KEY_BASE64=${DATABASE_SSL_KEY_BASE64}

- APIKEY_PATH=${APIKEY_PATH}

- SECRETKEY_PATH=${SECRETKEY_PATH}

- FLOWISE_SECRETKEY_OVERWRITE=${FLOWISE_SECRETKEY_OVERWRITE}

- LOG_LEVEL=${LOG_LEVEL}

- LOG_PATH=${LOG_PATH}

- BLOB_STORAGE_PATH=${BLOB_STORAGE_PATH}

- DISABLE_FLOWISE_TELEMETRY=${DISABLE_FLOWISE_TELEMETRY}

- MODEL_LIST_CONFIG_JSON=${MODEL_LIST_CONFIG_JSON}
ports:

- '"${PORT}:${PORT}"
volumes:

- /root/docker-data/flowise:/root/.flowise

entrypoint: /bin/sh -c "sleep 3; flowise start"

Figure C.1.3: FlowiseAl

source: https://qdrant.tech/documentation/guides/installation/
services:
qdrant:
image: qdrant/qdrant:latest
restart: always
container_name: qdrant
ports:
- 6333:6333
- 6334:6334
expose:
- 6333
- 6334
- 6335
configs:
- source: qdrant_config
target: /qdrant/config/production.yaml
volumes:

- /root/docker-data/qdrant:/qdrant/storage

XXXVI

configs:
gdrant_config:
content: |
log_level: INFO

Figure C.1.4: Qdrant

services:
aiptools:
build:
context:
dockerfile: Dockerfile
image: aiptools:latest
ports:
- 5000:5000
environment:
- REANA_SERVER_URL=https://reana-p4n.aip.de
extra_hosts:
- host.docker.internal:host-gateway

restart: always

Figure C.1.5: Own Tool Container - aiptools

XXXVII

Appendix D

First steps

D.1 Python Runner with Matplotlib

this code 1is based on a example from the openwebui pipline repository

— (https://github.com/open-webui/pipelines/blob/main/examples/pipelines/integrations/py,
— thon_code_pipeline.py)

and https://qgithub.com/FlowiseAI/Flowise/discussions/2581#discusstioncomment—10607580

from typing import List, Union, Generator, Iterator
from schemas import OpenAIChatMessage
import subprocess

import requests

class Pipeline:
def __init__(self):

Optionally, you can set the id and name of the pipeline.
Best practice ts to not specify the td so that it can be automatically inferred
— from the filename, so that users can install multiple versions of the same
— pipeline.
The identifier must be unique across all pipelines.
The tdentifier must be an alphanumeric string that can include underscores or
— hyphens. It cannot contain spaces, special characters, slashes, or
— backslashes.
self.id = "python_code_pipeline”
self .name = "Plotting Pipeline"

pass

XXXVIIT

async def on_startup(self):
Thts function ts called when the server ts started.
print(f"on_startup:{__name__3}")

pass

async def on_shutdown(self):
This function 1s called when the server is stopped.
print (£"on_shutdown:{__name__3}")

pass

def execute_python_code(self, code):

try:

result = subprocess.run(
["python", "-c", code], capture_output=True, text=True, check=True

)
stdout = result.stdout.strip()
return stdout, result.returncode

except subprocess.CalledProcessError as e:

return e.output.strip(), e.returncode

def pipe(

self, user_message: str, model_id: str, messages: List([dict], body: dict
) -> Union[str, Generator, Iterator]:

Thts 1s where you can add your custom pipelines like RAG.

print (f"pipe:{__name__3}")

print (messages)

print (user_message)

#c3ccb997-Tb42-4930-9ebb-2856be8744a5
url = 'http://141.33.165.24:8000/api/v1/prediction/5467£902-a69f-4bb1-8db7-40a70d
— a88d64'

headers = {'Content-Type': 'application/json'}

data = {'question': user_message}
response = requests.post(url, json=data, headers=headers)

if body.get("title", False):

print("Title Generation")

XXXIX

return "Python Code Pipeline"
else:
stdout, return_code = self.execute_python_code(response.json() ['text'].split(
— " python') [1].split ('~~~ ") [0])
output = response.json()['text'] + '\n script output:\n' + stdout

return output

Figure D.1.1: Open WebUTI pipeline

XL

D.2 Implementation to Generate and Run REANA Workflows

based on
< https://qgithudb.com/FlowiseAIl/Flowtse/discussions/2581#discussioncomment-10607580

from typing import List, Union, Generator, Iterator
from pydantic import BaseModel

import requests

import json

import reana_commons.validation.utils as rcv

import yaml

import re

import reana_client.api.client as rcl

import credentails

class Pipeline:
class Valves(BaseModel):
pass # No API key needed for Flowise API

def __init__(self):
self .name = "Reana-Runner"

self.valves = self.Valves()

async def on_startup(self):

print(f"on_startup:{__name__3}")

async def on_shutdown(self):

print(f"on_shutdown:{__name__}")

def pipe(
self, user_message: str, model_id: str, messages: List[dict], body: dict
) -> Union[str, Generator, Iterator]:

print (f"pipe:{__name__3}")

print (messages)

print (user_message)

API_URL = "http://141.33.165.24:8000/api/v1/prediction/47029097-b6f3-4589-94d4-ed
— 4d4e7ba648"

XLI

headers = {

"Content-Type": "application/json"

Creating the payload based on your example
payload = {

"question": user_message

print("Payload:", payload)

text = ""

try:

r = requests.post(
url=API_URL,
json=payload,
headers=headers,

stream=True,

r.raise_for_status()

if body.get("stream"):
for line in r.iter_lines():

line_data = line.decode('utf-8')

print("Line data:", line_data)

Parse the JSON line and extract the text part

response_json = json.loads(line_data)

if "text" in response_json:
print ("Streaming text:", response_json["text"])
text += response_json["text"]

validation = False

reana_file = {}

files = []
file_list = []
try:

files = re.split(r' "~ .x7\n', text)

XLII

files[len(files)-1] = files[len(files)-1].replace(' """, '')
files = list(filter(lambda item: item not in ['\n', ''], files))
reana_file = yaml.safe_load(files[0])
file_list = reana_file["inputs"]["files"]
if (len(rcv.validate_reana_yaml(reana_file)) < 1):
validation = True
except Exception as e:
print("Error:", e)

validation = False

if (validation):
rcl.create_workflow(reana_file, "hello",
— credentails.reana_api_key)
for i in range(l, len(files)):
rcl.upload_file("hello", files[i], file_list[i-1],
< credentails.reana_api_key)
rcl.start_workflow("hello", credentails.reana_api_key, None)
return "# This yaml specifications should work and will be run\n"
— t text
else:
return "# The response is not a valid REANA YAML. Please generate
< again. \n" + text
else:
response_json = r.json()
print ("Response JSON:", response_json)
Return only the "text" part of the response
if "text" in response_json:
print("Text:", response_json["text"])
validation = False
try:
data = yaml.safe_load(response_json["text"].split(" ~"")[1].split
- ey ob
if (len(rcv.validate_reana_yaml(data)) < 1):
validation = True
except Exception as e:
print ("Error:", e)

validation = False

if (validation):

XLIII

return response_json["text"]

else:
return "The response is not a valid REANA YAML. Please generate
— again."

else:
print("No text in response")
return "No text in response"
except Exception as e:
print("Error:", e + "\n" + text)

return f"Error: {e}"

Figure D.2.1: Open WebUI pipeline

XLIV

Appendix E

Final setup

E.1 Chain of toughs

&> Clear Chat

Hi there! How can | help?

orkflow: type: serial specifica
ry_limit: “100Mi kub

n

e
ata.py output

inputs: files: - reduce.
pecification:
ml.10134' kubernetes_memory_limit:
py-d user old
tro-ml.10134°

inputs: files
kubernetes s

Figure E.1.1: Chain of toughs 1

XLV

python

(& reanav

& clear chat

Figure E.1.2: Chain of toughs 2

XLVI

reana-val-tn

{'validationtrue}

python

& clear chat

Figure E.1.3: Chain of toughs 3

XLVII

& clear chat

- python helloworld.p

python

Figure E.1.4: Chain of toughs 4

XLVIII

XLIX

E.2 FlowiseAl workflows

£
]
H

Figure E.2.1: REANA generation FlowiseAl workflow

LI

Figure E.2.2: Open WebUI endpoint FlowiseAl workflow

LIII

E.3 Open WebUI Pipeline

source: https://github.com/FlowiseAl/Flowise/discussions/2581#discussioncomment-10607580

from typing import List, Union, Generator, Iterator
from pydantic import BaseModel
import requests

import json
class Pipeline:

def __init__(self):
self.name = "Reana-Final"

pass

async def on_startup(self):

print(f"on_startup:{__name__3}")

async def on_shutdown(self):

print(f"on_shutdown:{__name__}")

def pipe(
self, user_message: str, model_id: str, messages: List[dict], body: dict

) -> Union[str, Generator, Iterator]:

FlowiseAI API call (Open WebUI endpoint)
API_URL = "http://141.33.165.24:8000/api/v1/prediction/bddddad9-3b09-44f1-af80-e6
— 788a58d906"

headers = {

"Content-Type": "application/json"

adding last system message as history
if (len(messages) > 1):
user_message = user_message + "\n History:\n" +

- messages[len(messages)-2].get("content")

LIV

payload = {

"question": user_message,

try:

r = requests.post(
url=API_URL,
json=payload,
headers=headers,

stream=True,

r.raise_for_status()

if body.get("stream"):
for line in r.iter_lines():
line_data = line.decode('utf-8')
response_json = json.loads(line_data)
if "text" in response_json:
yield response_json["text"]
else:
response_json = r.json()
if "text" in response_json:
return response_json["text"]
else:
return "No text in response"
except Exception as e:
catch errors and give user instructions
print.error(f"An error occurred: {e}")
yield """An error occurred while processing the request:
Please only send tasks matching the topic REANA.
Here is a list of possible tasks:
- generate an workflow
- modify the last workflow
- upload to GitLab
- upload to REANA
Example for these are:

- "Please create an REANA workflow which,..."

Lv

- "Please change the parameter environment
— python3.9-slim"

- "Please upload this to GitLab"

- "Please upload this to REANA"

You probably send harmful data"""

to

Figure E.3.1: OpenWebUI pipeline of the final prototype

LVI

E.4 Time consumption

‘ ‘ Answer

LVII

Direct Ollama call

REANA is a reusable and reproducible analysis platform that
supports various computational workflows using different types of
computational backends such as Kubernetes, Slurm, or HTCon-
dor. Below is a simple example of how you can create a "Hello
World” workflow in REANA.

##+# Step 1: Create the Workflow Specification

Firstly, you need to define your workflow specification file (e.g.,
‘reana.yaml‘). This file will describe the steps and tools required
for your analysis.

Here’s an example of what this might look like:

“yaml specification: type: serial steps: - environment:
'python:3.8-slim’ computational_backend: kubernetes command:
— python jjEOF print(”Hello, World!”) EOF “

This workflow uses a Python 3.8 slim Docker image to run the
script that prints ”Hello, World!”.

Step 2: Create Your Workflow

To create your REANA workflow, you need to have the ‘reana-
client’ installed and configured with access to a running REANA
server. If not already done, install it using pip:

“bash pip install reana-client “

Then, configure the client by pointing it towards your REANA
server (replace ‘{REANA_SERVER_URL;‘ with the actual URL
of your REANA server):

“bash export REANA_SERVER_URL={REANA_SERVER_URL;,
reana-client ping

#4## Step 3: Upload and Run Your Workflow

Once you have your ‘reana.yaml’ file ready, upload it to REANA:
“bash reana-client create -n my-hello-world-workflow reana-client

1113

upload reana.yaml reana-client start my-hello-world-workflow
#+## Step 4: Check the Results

You can check the status of your workflow and its output using
the following commands:

To see the status: ““bash reana-client status -w my-hello-world-
workflow “

To list all files in your workspace (including logs): “‘bash reana-
client 1s -w my-hello-world-workflow

And to download specific files, such as log files or output
files: “‘bash reana-client download jfilename; -w my-hello-world-
workflow “

This is a basic example of setting up and running a ”Hello World”
workflow in REANA. Depending on your needs, you can expand
this with more comf)‘l\éylivorkﬂows involving multiple steps, differ-
ent computational backends, or even interactive sessions for data

analysis.

Simple RAG call

FlowiseAl call

Based on the context provided, I can help you draft a simple
"Hello World” REANA workflow similar to the ones given in the
examples.

Here’s how your ‘helloworld.yaml* file might look:

“yaml inputs: files: - helloworld.py

workflow: type: serial specification: steps: - environ-
ment: "docker.io/library/python:3.10-bookworm’ kuber-
netes_memory_limit: ’100Mi’ kubernetes_job_timeout: 60 #
seconds commands: - python helloworld.py “

And your ‘helloworld.py* file should contain:

“python print(”Hello World!”)

This workflow will run the Python script that prints ”Hello
World!” to the console.

Pass Input: ““yaml # Hello World Workflow inputs: files: - hel-
loworld.py

workflow: type: serial specification: steps: - environ-
ment;: "docker.io/library /python:3.10-bookworm’ kuber-
netes_memory_limit: ’100Mi’ kubernetes_job_timeout: 60 #
seconds commands: - python helloworld.py “ “‘python +#
helloworld.py print(”Hello, World!”)

Table E.4.1: Time consumption table - answers

import requests
import time

import pandas as pd

question = "Please create an hello world REANA workflow."

times = []

answers = []

ollama call

url = 'http://141.33.165.24:11434/api/generate’

payload = {

"model": 'qwen2.5:32b-instruct-q8_0',

"stream" : False,

"prompt": question,

"options": {
"temperature": 0.3

T,

LIX

start = time.time()

response = requests.post(url, json=payload).json()
end = time.time()

times.append(end - start)

answers. append([response.get ("response")])

#rag call
API_URL =
"http://141.33.165.24:8000/api/vl/prediction/6b74c5bd-bcf9-4a29-824f-06d0028cce74"

payload = ({
"question": question,
"overrideConfig": {

"modelName": "qwen2.5:32b-instruct-q8_0",

)

start = time.time()

response = requests.post(API_URL, json=payload).json()
end = time.time()

times.append(end - start)

answers . append ([response.get ("text")])

flowise call
API_URL =
— "http://141.33.165.24:8000/api/vl/prediction/bddddad9-3b09-44f1-af80-e6788a58d906"

payload = {

"question": question

start = time.time()
response = requests.post(API_URL, json=payload).json()
end = time.time()

times.append(end - start)

LX

answers.append([response.get ("text")])

round and format wvalues
times = [round(time, 2) for time in times]

times = [f"{time:.2f}" for time in times]

lists to df
df = pd.DataFrame(times, columns=["Time(in s)"], index=["Direct Ollama call", "Simple RAG
— call", "FlowiseAI call"])

df2 = pd.DataFrame(answers, columns=["Answer"], index=["Direct Ollama call", "Simple RAG
— call", "FlowiseAI call"])

generate latex tables and save

table = df.to_latex(index=True, escape=True, column_format="|1l|r|", caption=r"Time
< consumption table")

table2 = df2.to_latex(index=True, escape=True, column_format="|1l|r|", caption=r"Time

— consumption table - answers")

file = open("time_evalution.table.tex", "w")
file.write(table)
file.close()

file = open("time_evalution.answers.tex", "w")
file.write(table2)
file.close()

Figure E.4.1: Time consumption script

LXI

E.5 Usage of Prototype Examples

E.5.1 Generating an workflow

Ol

Please create an hello world reana workflow!

Reana-Final
yaml Save Copy
1 # Hello World Workflow
2, inputs:
3. files:
4 - helloworld.py
5. workflow:
B type: serial
7 specification:
B steps:
9. - environment: ‘docker.io/library/python:3.10-bookworm'
10 kubernetes memory limit: '1060Mi’
11 kubernetes job timeout: 60 # seconds
12, commands :
13 - python helloworld.py
python Run Save Copy

1 # helloworld.py
2 print("Hello, World!")

0P e

Figure E.5.1: Example - generating an REANA workflow via Open WebUI web interface

LXII

E.5.2 Adjust an workflow

Save Copy
1 # Hello World Workflow
2. inputs:
3. files:
4 - helloworld.py
5, workflow:
6 type: serial
7. specification:
8, steps:
9, - environment: 'docker.io/library/python:3.10-bookworm'
10 kubernetes_memory limit: '106Mi’
11 kubernetes_job_timeout: 68 # seconds
12, commands :
3 - python helloworld.py
python Run Save Copy

1 # helloworld.py
2 print({"Hello, World!")

Please change this workflow, so that the output is “Hello, REANAI"

Ol Reana-Final

yami Save Copy

1 # Hello REANA Workflow
2. inputs:

3y files:

4 - helloworld.py
5, workflow:

6 type: serial

Ty specification:

8
9

v steps:
v - environment: 'docker.io/library/python:3.10-bookworm'
10 kubernetes memory limit: '1@@Mi‘
11 kubernetes job timeout: 608 # seconds
12, commands :
3 - python helloworld.py
python Run Save Copy

1 # helloworld.py
2 print("Hello, REANA!")

g Owd P

+ $

Figure E.5.2: Example - adjust an REANA workflow via Open WebUI web interface

LXTII

E.5.3 Upload an workflow to REANA

Ol

ol

Reana-Final
yaml Save Copy
1 # Hello REANA Workflow
2., inputs
3. files
4 - helloworld.py
5., workflow:
B type: serial
s specification:
e steps:
9., - environment: 'docker.io/library/python:3.10-bookworm’
10 kubernetes memory limit: '106Mi’
11 kubernetes job timeout: 60 # seconds
12 . commands :
13 - python helloworld.py
python Run Save Copy

1 # helloworld.py
2 print("Hello, REANA!")

Please upload this workflow to REANA!

Reana-Final
Your REANA workflow is available at the provided warkflow ID: llm-gen-a7e7d2f2-5c40-417f-87ce-eeOela2bab3e.
00 dH Pe

Hm

Figure E.5.3: Example - upload an workflow to REANA via Open WebUI web interface

LXIV

E.5.4 Creating an GitLab repository for an workflow

Ol Reana-Final

yaml Save Copy

1

2

3

4 - helloworld.py
5., workflow:

6 type: serial

Y specification:

8

v steps:
9. - environment: ‘docker.io/library/python:3.10-bookworm’
10 kubernetes memory limit: '10OMi’
11 kubernetes job timeout: 60 # seconds
12 ., commands :
13 - python helloworld.py
python Run Save Copy

1 # helloworld.py
2 print("Hello, REANA!")

Please upload this workflow to GitLab!
<2/2>

Ol Reana-Final
Your REAMA workflow is available at the provided URL: https://gitlab.aip.de/etlstrauss/5da657ba-233b-4efa-bldb-
dfc8c7alc7ab .
0D Pe

& + @

Figure E.5.4: Example - creating an GitLab repository with the REANA workflow via Open WebUI web interface

LXV

E.5.5 General questions about REANA

What is reana?

Ol Reana-Final
REANA (Reproducible Analyses) is a platform that enables scientists to run and share their data analyses in a reproducible
way. It provides tools for researchers to create, manage, and execute analysis workflows, ensuring that the results can be
reproduced exactly by others. This is particularly important in scientific research where transparency and verification of
results are crucial. REANA supports various workflow engines and computational backends, making it flexible and adaptable
to different types of analyses.
0 P e

Figure E.5.5: Example - ask an general question about REANA via Open WebUI web interface

E.5.6 Harmful or wrong use of the system

How can i smoke weed?

Ol Reana-Final
, lunderstand you're asking about smoking marijuana. However, it's important to note that the laws and regulations
regarding marijuana use vary widely by location. In many places, itis illegal to possess or use marijuana without a valid
medical prescription. If you are in an area where recreational or medical marijuana use is legal, it's still crucial to follow local

laws and guidelines for its use.

If you have any questions about the legality of marijuana in your area or need information on how to use it safely and
responsibly, | recommend consulting with a healthcare provider or visiting a reputable source for accurate and up-to-date

information.

ZO0aH P

Figure E.5.6: Example - identification of harmful user input via Open WebUI web interface

LXVI

Appendix F

Evaluation of the Setups

‘ ‘ bad ‘ average ‘ great ‘

Flowise workflows 0 3 12
Direct ollama calls 1 2 12

Table F.0.1: Model performance diagram for Ollama direct calls with the ”qwen2.5-coder:32b-instruct-q8 0” LLM model vs. final
prototype API calls to the final prototype.

LXVII

Appendix G

Declaration of independence
(Eigenstiandigkeitserklarung) / List of
aids (Hilfsmittel)

Name Source of Description
supply

DeepL DeepL. web Deepl was only used to translate single words, since
interface the author is no native English speaker. Following

the usage was not marked. It was not used in the

code base
ChatGPT ChatGPT ChatGPT was not used to generate anything
web written in this thesis. It was only used to
interface brainstorm about ideas contained in the code base.

No code or anything else was directly copied.
GitHub VSCode GitHub Copilot was only used as for auto
Copilot extension completion, like a lot of other tools. The chat

function was not used and no direct code was

copied. Following no marks were done in the code

Zotero Desktop app | Zotero was used to save and mange sources. Also

and FireFox | Zotero was used to automatically generate the

extension bibliography for this thesis.

LXVIII

TexMaker Desktop app | TexMaker was used to write this thesis. The build
in function to run spell checking was used, based on
an separate dictionary file.

Internet Browser Different sources were used to create the code base
for this thesis. The sources for the different scripts
will be included as comment in the scripts themself.

VSCode Desktop app | VSCode was used to build the code base. Not
named and used extension are ”Jupyter” and
”Code Spell Checker”.

Microsoft Desktop app | Used only for spellchecking (build in function)

Word

Lectors Friends and Some Friends and family member proofread this

family

thesis. This is based on the hints web site to the
topic thesis from the Hochschule Stralsund
https://www.hochschule-stralsund.de/host/
einrichtungen-und-verwaltung/
hochschulbibliothek/
wissenschaftliche-services/

tipps-fuer-die-abschlussarbeit/.

Table G.0.1: Aids list (Hilfsmittel)

LXIX

https://www.hochschule-stralsund.de/host/einrichtungen-und-verwaltung/hochschulbibliothek/wissenschaftliche-services/tipps-fuer-die-abschlussarbeit/.
https://www.hochschule-stralsund.de/host/einrichtungen-und-verwaltung/hochschulbibliothek/wissenschaftliche-services/tipps-fuer-die-abschlussarbeit/.
https://www.hochschule-stralsund.de/host/einrichtungen-und-verwaltung/hochschulbibliothek/wissenschaftliche-services/tipps-fuer-die-abschlussarbeit/.
https://www.hochschule-stralsund.de/host/einrichtungen-und-verwaltung/hochschulbibliothek/wissenschaftliche-services/tipps-fuer-die-abschlussarbeit/.
https://www.hochschule-stralsund.de/host/einrichtungen-und-verwaltung/hochschulbibliothek/wissenschaftliche-services/tipps-fuer-die-abschlussarbeit/.

Eigenstandigkeitsklarung

Hiermit versichere ich, dass ich die vorliegende Arbeit durchgehend eigenstandig und ohne fremde
Hilfe verfasst habe.

Ich erklare weiter, dass ich keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe,
Alle Stellen der vorliegenden Arbeit, die dem Wortlaut oder dem Sinn nach anderen Quellen - auch
elektronischen Medien - entnommen oder (ibersetzt worden sind, wurden unter Angabe der Quelle
als solche kenntlich gemacht.

Zudem erkldre ich, dass ich beim Einsatz von Kl-gestiitzten Schreibwerkzeugen bzw. Kl-gestiitzten
sonstigen Werkzeugen/Hilfsmitteln diese mit ihrem Produktnamen, meiner Bezugsquelle und einer
Ubersicht des im Rahmen der vorliegenden Arbeit genutzten Funktionsumfangs — unter Angabe aller
ubernommenen Textbausteine bzw. sonstiger Bausteine — vollstindig in der ,,Ubersicht verwendeter
Hilfsmittel” aufgeflhrt habe. Sofern von der Hochschule diesbeziiglich Zitiervorgaben bestehen, habe
ich diese eingehalten.

Die vorliegende Arbeit wurde bisher keiner anderen Priifungsbehérde in gleicher oder vergleichbarer
Form bzw. in Teilen vorgelegt. Die vorliegende Arbeit wurde bisher nicht veréffentlicht.

Mir ist bekannt, dass es sich bei einem Plagiat um eine Taduschung handelt, die gemaR der
Prafungsordnung sanktioniert werden kann, insbesondere durch eine Benotung der Arbeit mit der
Note “nicht ausreichend” sowie in schwerwiegenden Fillen durch den Ausschluss von der Erbringung
weiterer Prifungsleistungen. Dariiber hinaus ist mir bekannt, dass Verletzungen des Urheberrechts
strafrechtlich und zivilrechtlich verfolgt werden kénnen.

bl O30 I8 i A

Ort, Datum Unter&Chrift”

	Abstract
	Introduction
	Theory
	Technical fundamentals
	Large Language Models (LLMs)
	Retrieval-Augmented Generation (RAG)
	Agents and Agent Systems

	A Reproducible Analysis Platform REANA
	Machine Learning (ML) Libraries, Frameworks and Platforms
	Ollama
	CrewAI
	LangChain
	LlamaIndex
	FlowiseAI
	LangFlow
	Open WebUI
	Qdrant

	Practical
	Hardware and Software Environment
	Hardware
	Software

	Infrastructure Setup
	Setup and Usage
	Ollama
	FlowiseAI
	CrewAI and LangChain
	LangFlow
	Open WebUI
	Qdrant

	Choice of Tools
	FlowiseAI vs. Langflow
	User Interface
	Vector Store
	Docker and Docker Compose

	Development Environment and Challenges
	Docker to Docker Compose
	Challenges

	Model Evaluation
	Configuration Details
	Model Evaluation Overall
	Model Evaluation by Model
	Model Evaluation by Model in Detail
	Validation

	First Steps with FlowiseAI and Open WebUI
	Python Runner with Matplotlib
	Implementation to Generate and Run REANA Workflows

	Final Setup
	FlowiseAI Workflows
	Output Standard Format
	REANA Generation Workflow
	Open WebUI Endpoint Workflow

	Open WebUI Pipeline
	Custom Tools
	General Structure
	Tools

	Evaluation of the Setups
	Response Evaluation
	Time Consumption

	Conclusions
	Benefits and Limitations
	Next Steps

	Acknowledgments
	Model evaluation configurations / question catalogue
	Question Catalogue
	Configurations

	Model evaluation
	Scripts for Model Evaluation Without RAG
	Analyses
	Evaluation Table
	Scripts for Model Evaluation With RAG
	Analyses with RAG
	Evaluation Table
	Final Workflow evaluation
	Analyses (final)
	Evaluation Table
	Evaluation Tables

	Docker
	Docker compose files

	First steps
	Python Runner with Matplotlib
	Implementation to Generate and Run REANA Workflows

	Final setup
	Chain of toughs
	FlowiseAI workflows
	Open WebUI Pipeline
	Time consumption
	Usage of Prototype Examples
	Generating an workflow
	Adjust an workflow
	Upload an workflow to REANA
	Creating an GitLab repository for an workflow
	General questions about REANA
	Harmful or wrong use of the system

	Evaluation of the Setups
	Declaration of independence (Eigenständigkeitserklärung) / List of aids (Hilfsmittel)

