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Zusammenfassung

Beobachtungen haben ergeben, dass die Milchstraße, die Andromeda-Galaxie und
Centaurus A raumlich dünne und kinematisch kohärente Ebenen von Satelliten
um sie beherbergen. Solche Strukturen gelten als äußerst unwahrscheinlich im
Rahmen des Standard-ΛCDM-Kosmologiemodells, und die Stabilität dieser Ebe-
nen ist seit langem Gegenstand kontroverser Diskussionen. Die genaue Bestim-
mung der Stabilität dieser Satellitenebenen erfordert ein gründliches Verständnis
orbitaler Parameter wie Eigenbewegung, Entfernung und Geschwindigkeit entlang
der Sichtlinie, zusätzlich zum Gravitationspotenzial der Gastgalaxie. Viele dieser
Parameter bleiben jedoch unzureichend eingeschränkt, was zu erheblichen Unsicher-
heiten in jeder Analyse führt. Diese Forschung zielt darauf ab, die Auswirkungen
von Messunsicherheiten in Eigenbewegungen und Entfernungen der Satellitengalax-
ien auf die abgeleitete Stabilität dieser Satellitenebenen zu untersuchen. Um dies
zu untersuchen, werden Computersimulationen von Test-Satellitengalaxien, die eine
Gastgalaxie umkreisen, erstellt. Diese simulierten Satellitensysteme werden dann
imitiert beobachtet und analysiert, um Trends und Korrelationen zwischen den
bekannten Anfangsbedingungen und Unsicherheiten in den orbitalen Parametern
der Satellitensysteme zu identifizieren. Darüber hinaus wurden auch die Auswirkun-
gen unterschiedlicher Milchstraßenpotenziale und unterschiedlicher orbitaler Exzen-
trizitäten berücksichtigt. Die Ergebnisse deuten darauf hin, dass Unsicherheiten in
den Eigenbewegungen zu einer abgeleiteten, scheinbaren Ausdehnung einer intrin-
sisch stabilen Satellitenebene führen, wobei ihre Breite linear mit den angenomme-
nen Unsicherheiten in der Eigenbewegung zunimmt. Selbst bei Unsicherheiten auf
dem Niveau von Gaia-Systematiken, wie zum Beispiel 0,04 masyr−1, wird die Ebene
bereits für Satelliten auf ähnlich exzentrischen Umlaufbahnen wie das beobachtete
Milchstraßensatellitensystem stark instabil. Unsicherheiten in der Entfernung tra-
gen ebenfalls deutlich zur Instabilität bei. Unter den verschiedenen analysierten
Potenzialmodellen der Milchstraße hatte eine Unterschätzung des Potenzials der
Gastgalaxie einen signifikanten Einfluss auf die Stabilität dieser Ebenen.
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Abstract

Observations have revealed that the Milky Way, Andromeda Galaxy, and Cen-
taurus A host spatially thin and kinematically coherent planes of satellites around
them. Such structures are considered highly improbable within the standard ΛCDM
cosmological model, and the stability of these planes has been a subject of debate for
a long time. Accurately determining the stability of these satellite planes requires a
thorough understanding of orbital parameters such as proper motion, distance, and
line-of-sight velocity, in addition to the gravitational potential of the host galaxy.
However, many of these parameters remain insufficiently constrained, leading to sig-
nificant uncertainties in any analysis. This research aims to explore the impact of
measurement uncertainties in proper motions and distances of the satellite galax-
ies on the inferred stability of these satellite planes. To investigate this, computer
simulations of test satellite galaxies orbiting a host galaxy are set up. These simu-
lated satellite systems are then mock-observed and analyzed to identify trends and
correlations between the known initial conditions and uncertainties in the orbital
parameters of the satellite systems. Additionally, the effect of different Milky Way
potentials and different orbital eccentricities have also been considered. The findings
indicate that uncertainties in proper motions lead to an inferred, apparent widening
of intrinsically stable satellite plane, with their width increasing linearly with the
adopted proper motion uncertainties. Even with uncertainties on the level of Gaia
systematics, such as 0.04 masyr−1, the plane becomes already highly unstable for
satellites on similarly eccentric orbits as the observed Milky Way satellite system.
Uncertainties in distance also contribute noticeably to the instability. Among the
various Milky Way potential models analyzed, underestimating the host galaxy’s
potential showed a significant impact on the stability of these planes.
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Chapter 1

Introduction

Cosmology, the scientific investigation of the structure, evolution, and composition

of the universe, has been a topic of human curiosity and inquiry since ancient times.

Throughout human history, various cultures and civilizations, including the Greeks,

Indians, Chinese, and Muslims, have attempted to comprehend the origins and

riddles of the universe through philosophical and religious mediums. However, it

was only in the last few centuries that cosmology evolved as a distinct discipline

within physics, utilizing a rigorous, empirical, and data-driven approach to unveil

the secrets of the cosmos.

The advent of modern cosmology was characterized by the outcomes of new ob-

servational technologies, analytical methods, and computational capacities, which

allowed for exceptional exploration of the universe. Despite the extensive progress in

cosmology, much remains to be understood about the universe. The study of cosmol-

ogy continues to pose some of the most complex and challenging questions in science,

requiring interdisciplinary collaboration and the integration of cutting-edge technol-

ogy, observational data, and theoretical models. The pursuit of understanding the

universe through the lens of cosmology remains a quest of immense importance.

1.1 Cosmological background

It won’t be wrong to state that modern cosmology traces its roots of origin back

to 1916 when Albert Einstein published his groundbreaking work, Die Allgemeine

Relativitätstheorie (the general theory of relativity) (Einstein, 1915). According to

his theory, gravity is not a force between masses, as it was considered in classical me-

chanics, but instead, it is the curvature of spacetime caused by the presence of mass

and energy. The curvature of spacetime is described by the Einstein field equations,

which later on, were solved by A. Friedmann, G. Lemâıtre, H. P. Robertson, and

A. G. Walker, under the assumption of the Cosmological Principle (Friedman, 1922;

Lemâıtre, 1927; Robertson, 1929; Walker, 1935). This principle states that at large

scales, the universe is considered to be homogeneous and isotropic. Observations

of the CMB have shown a significant level of isotropy when the dipole component

(which arises from the relative motion of the Local Group) and the contribution of

the Milky Way’s emission (which can be quite strong at frequencies close to those
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Figure 1.1: The ALMA antennae are illuminated by a red glow, while the back-
ground includes the southern Milky Way to the left and the Magellanic Clouds at
the top. Image source: European Southern Observatory

of the CMB) are excluded (Ade et al., 2014). However, galaxies may be grouped or

clustered with higher random velocities on smaller scales of a few Mpc. Therefore,

to study the large-scale structure of the universe and its homogeneity, one needs to

look at even larger scales beyond a few Mpc, where the random velocities of galaxies

appear to be more homogeneous. This requires using large telescopes and surveys

that cover a wide area of the sky to map out the distribution of galaxies on larger

scales. Large sky surveys such as SDSS have shown homogeneity is reached for scales

greater than 70 Mpch−1 (Sarkar et al., 2009). Based on the cosmological assump-

tion, a model of the universe was created, the dynamics of which are determined by

the Friedmann-Lemâıtre equations (Friedman, 1922):

H2 = (
ȧ

a
)2 =

8πG

3
ρ− kc2

a2
+

Λc2

3
(1.1)

ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
(1.2)

Here, a is the scale factor of the universe, ρ is the density of matter, p is the

pressure of the universe, c is the speed of light, G is the gravitational constant, Λ is

the cosmological constant, and k is the curvature of space (which can be positive,

negative, or zero). The dots above a denote derivatives with respect to time. These

equations describe the evolution of the universe based on its energy density and

pressure. Equation 1.1 is usually written in terms of density parameters, which

are the dimensionless quantities that describe the relative contributions of different

types of matter and energy to the total energy density of the universe.
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H(a)2 = H2
0

[
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

]
(1.3)

Here, Ωi represents the cosmic density parameter (where i denotes different

energy components: radiation, matter, curvature, and dark energy) and H(a) is

the Hubble parameter, which is a measure of the rate at which the universe is

expanding (Hubble and Humason, 1931).

Today, the scientific community widely accepts the Lambda Cold Dark Matter

(ΛCDM) cosmological model due to its ability to explain a range of astrophysical

phenomena such as Big Bang Nucleosynthesis, the accelerated expansion of the

universe, the power spectrum of the Cosmic Microwave Background, and large-scale

structure traced by observed galaxies (McGaugh, 2015; Merritt, 2017). It is based

on the idea that the universe is composed of three main components with some

shocking proportions: normal matter accounting for only about 5%, cold dark matter

about 27%, and dark energy about 68%, which can be associated with Einstein’s

cosmological constant (Ade et al., 2016).

In terms of particle physics, normal matter is made up of baryons (e.g., protons,

neutrons, and other sub-atomic particles) and leptons (e.g., electrons and muons

etc.). Regarding dark matter, it is still quite uncertain what exactly it is composed

of. The presence of dark matter is mostly inferred from astronomical observations.

The earliest indications of dark matter date back to the start of the 20th century

when researchers observed mass excess that contradicted the established theory of

Newtonian dynamics. In 1937, Swiss astrophysicist Zwicky conducted a study on

the velocity dispersion of galaxies in the Coma cluster, comparing it to the virial

theorem (Zwicky, 1937). The results showed that a significantly higher amount of

mass was required than what could be inferred from stars alone. During the 1970s,

strong evidence of dark matter came out when researchers found a discrepancy in

the rotational curves of the Milky Way and other close galaxies. They found that

stars in spiral galaxies had either flat or increasing rotation velocities as the radius

increased. These observations implied the presence of a substantial amount of non-

luminous matter outside the optical galaxy (Rubin and Ford Jr, 1970). Other strong

evidence for the presence of dark matter has been produced through gravitational

lensing of background objects by galaxy clusters, such as the Bullet Cluster (Clowe

et al., 2006).

Like cold dark matter, the evidence of dark energy has also been obtained with

indirect methods. It wasn’t until researchers noticed that the Universe was expand-

ing at an increasing rate that we included dark energy in the cosmological model.

This phenomenon of accelerating expansion was observed through the distance ex-

amination of Type Ia supernovae (SNIa) that were used as standard candles. The

measured distances were significantly larger than the model predicted without the

presence of dark energy (Riess et al., 1998; Perlmutter et al., 1999).
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1.1.1 Structure Formation

The CDM theory and observations of the CMB have been crucial in developing

our understanding of the formation and evolution of large-scale structures in the

universe (Press and Schechter, 1974). Structure formation refers to the process by

which large-scale structures in the universe, such as galaxies, clusters of galaxies,

and cosmic filaments, form and evolve over time. A significant achievement of the

ΛCDM model was the agreement between its predicted and observed anisotropies in

the Cosmic Microwave Background Radiation (CMBR) created during the recom-

bination epoch. According to this model, the formation of structures on the largest

scales is predominantly influenced by the gravitational forces of dark matter, caus-

ing the matter to gather into dense clusters, sheets, and filaments, with vast empty

spaces known as voids in between. One of the primary objectives of modern cosmol-

ogy is to understand how the structure of our universe evolved from its early stages.

The prevailing idea is that of inflation, which leads to a homogeneous universe, but

quantum fluctuations in the very early universe produced fluctuations in density.

These fluctuations underwent rapid expansion during the inflationary period, and

eventually, the density fluctuations grew large enough to undergo gravitational col-

lapse, leading to the formation of the first structure. This process emphasizes the

crucial role of dark matter in shaping the universe, as it provides the gravitational

potential necessary for structure formation.

In a matter-dominated universe, the formation of structure is driven by the

evolution of matter density perturbations. The degree of perturbation in matter

density is quantified using the dimensionless quantity called density contrast.

δ(r̃) =
ρm(r̃)

ρ̄m
− 1 (1.4)

In this equation, δ(r̃) is the density contrast at a point r̃, ρm(r̃) is the matter

density at that point, and ρ̄m is the average matter density of the universe.

In the linear regime, where δ(r̃) ≪ 1 at all scales, linear theory provides a

precise description. However, as δ increases due to gravitational instability, the

linear approximation becomes insufficient, and nonlinear effects become important.

During this period, clumps of dark matter underwent gravitational collapse, leading

to the formation of halos and voids, thus producing the known cosmic web. It

has also been shown that the smaller scales show a higher amplitude to attain non-

linear mass than larger scales, causing them to collapse before larger structures, thus

leading to a bottom-up scenario for structure formation, with lower-mass structures

forming first (White and Rees, 1978).

The nonlinear evolution of the density field is complex and defies analytical de-

scription. Therefore, the most efficient way to study the nonlinear evolution of the

density field is through numerical simulations. High-resolution computer simula-

tions have allowed for precise predictions regarding the distribution and properties

of galaxies and clusters. For a brief period of time, the leading simulations were

the Millennium-I (Springel et al., 2005) and Millennium II (Boylan-Kolchin et al.,

2009), which served as the foundation for over 400 research studies. Later, with
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advancements in the measurement of cosmological parameters, simulation methods,

and computing power, newer simulations such as Bolshoi (Klypin et al., 2011) and

BigBolshoi/MultiDark (Prada et al., 2012; Riebe et al., 2013) have been able to de-

liver more precise results. These simulations have been recomputed using the latest

Planck cosmological parameters (Klypin et al., 2016).

Figure 1.2 shows the distribution of galaxies within large-scale structures. This

illustration includes data from the observational CfA2 (Geller and Huchra, 1989),

2dFGRS (Colless et al., 2001), and SDSS (York et al., 2000) surveys, as well as

a model created by the Millennium simulation (Springel et al., 2005). The image

demonstrates that the galaxies are aligned as part of these large-scale structures.

There are even some theoretical models that explain the nonlinear evolution.

For instance, the spherical collapse model states that regions with a density higher

than the background will evolve similarly to an isolated matter-dominated universe,

and these regions will expand until a turning point, at which they collapse until

the matter reaches an equilibrium state where the potential energy is equal to twice

the kinetic energy, as described by the virial theorem. The density at which this

happens is about 178 times the background density, which is normally rounded up

to 200 to define halo masses as M200 (White, 2001).

Mvir =
4π

3
ρ̄m∆virr

3
vir (1.5)

Where Mvir is the virial mass of a dark matter halo, ρ̄m is the mean matter

density of the universe, ∆vir is the virial overdensity, and rvir is the virial radius of

the halo.

1.2 Towards the Observation

As previously discussed, the ΛCDM model is widely accepted among researchers as

the preferred cosmological model on large scales. However, it faces difficulties in

explaining the properties and formation of galaxies on smaller scales, particularly

concerning the satellite dwarf galaxies of large galaxies such as the Milky Way and

its neighboring galaxy, Andromeda. One of the concerning challenges is the ”planes

of satellite galaxies problem” (Pawlowski, 2018). This challenge arises from the pres-

ence of a thin and kinematically coherent plane of satellite galaxies surrounding their

host galaxies, which is difficult to replicate in ΛCDM simulations. Additionally, the

model encounters difficulties with other features, such as the ”cusp/core (CC) prob-

lem” (Bullock and Boylan-Kolchin, 2017), the ”missing satellite problem” (MSP)

(Klypin et al., 1999), and the ”Too Big To Fail” (TBTF) problem”. Recently, these

concerns have been largely addressed through the shift from dark-matter-only (DM

only) simulations to those that also consider baryonic feedback (Garrison-Kimmel

et al., 2019). With the inclusion of baryonic feedback effects, simulations have been

able to more accurately replicate the observed satellite galaxies around the Milky

Way and other galaxies. Examples of baryonic feedback processes include super-

novae explosions, which can eject gas from a galaxy and prevent the formation of
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Figure 1.2: The arrangement of galaxies obtained through spectroscopic redshift sur-
veys and mock catalogues generated from cosmological simulations (Springel et al.,
2006).
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new stars, and the formation of black holes. Baryonic feedback is an important

factor to consider in simulations of galaxy formation and evolution, as it can have

significant impacts on the properties of a galaxy (Hopkins et al., 2014).

This section will focus on the examination of several significant satellite planes

surrounding their host galaxies, along with an exploration of prior studies on similar

structures.

1.2.1 The Vast Polar Structure (VPOS ) of the Milky Way

The Milky Way is surrounded by several relatively small galaxies that are bound to

it, and their distribution is highly anisotropic, meaning that they are not isotropic

or uniformly distributed in all directions (see Figure 2.4). Instead, they are largely

concentrated in a thin plane around the Milky Way, with a few more distant outliers

(Lynden-Bell, 1976; Kroupa et al., 2005; Pawlowski et al., 2012).

By the 1990s, only a handful of 11 satellite galaxies of the Milky Way had been

discovered and are now referred to as the ”classical” satellites. The number of known

satellite galaxies of the Milky Way has significantly increased with the advancements

in observational technology, larger telescopes and systematic sky surveys and around

60 dwarf galaxies have been discovered (Simon, 2019). The discovery of these addi-

tional satellites has provided valuable insights into the distribution and properties

of satellites around the Milky Way, which has helped to enhance our understand-

ing of their formation and evolution. The satellites are arranged in a thin disk-like

structure known as the ”vast polar structure (VPOS)” with a narrow plane, root

mean square (rms) thickness of 20-30 kpc, axis ratio c/a of 0.18–0.30, a radius of

about 250 kpcs. The VPOS is almost perpendicular to the Milky Way (Pawlowski

and Kroupa, 2020). The proper motions (PMs) of the 11 brightest or classical MW

satellites were studied, and it was found that almost all of these orbit in the same di-

rection (Pawlowski and Kroupa, 2013), suggesting that these satellite galaxies form

a coherent structure and may have evolved together. At least eight of these satellite

galaxies are consistent with orbital planes that are closely aligned with the VPOS

- Carina, Draco, Fornax, Leo II, LMC, SMC, and Ursa Minor appear to co-orbit

along the VPOS, while Sculptor appears to be counter-orbiting in the structure.

Additional, fainter satellite galaxies discovered, primarily through the Sloan Digital

Sky Survey (SDSS) and the Dark Energy Survey (DES), have bolstered this favored

spatial alignment.

Although there is a serious concern among researchers that the sky coverage such

as SDSS is not uniform, and covers the regions close to the Milky Way poles which

could potentially bias the observed distribution of satellite galaxies, researchers also

find that if the satellites were picked from an isotropic distribution, this would be

unlikely (Pawlowski, 2018).

1.2.2 The Great Plane of Andromeda (GPoA)

The Pan-Andromeda Archaeological Survey (McConnachie et al., 2009) sky survey,

which covers a distance of about 150 kiloparsecs (kpc) from M 31, has revealed a
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Figure 1.3: These figures display the edge-on views of the Milky Way and An-
dromeda galaxy’s satellite planes. The left panel showcases the VPOS of the Milky
Way as seen from a vantage point where both the galaxy and the plane of satellite
are in an edge-on orientation. The right panel illustrates the GPoA surrounding
Andromeda as seen from the Sun. The best fit for the satellite galaxy planes is
represented by dashed lines, with the width of these planes depicted by dotted lines.
The line-of-sight velocities of the satellites are indicated with blue downward trian-
gles for approaching satellites and red upward triangles for receding satellites that
are part of the plane. Open triangles represent satellites that are not part of the
plane, while crosses are the satellites fainter than the classical satellites. The shaded
areas highlight regions with significant observational limitations (Pawlowski, 2018).
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substantial population of satellite galaxies around M31. Like the VPOS, a similar

structure of flattened satellite galaxy distributions has also been observed around

the Andromeda Galaxy (M31) (Ibata et al., 2013; Conn et al., 2013), which is termed

The Great Plane of Andromeda (GPoA), (see Figure 2.4).The GPoA is nearly edge-

on as viewed from the Sun, with an average distance (rms plane height) of about

12.6 kpc between the satellites within the GPoA and the plane they are aligned in.

This measurement gives us an idea of how closely packed and aligned the satellites

within the GPoA are to each other in space. Additionally, the GPoA extends over a

distance of 400 kpc and has an axis ratio of c/a = 0.1, indicating that the thickness

of the GPoA is relatively small compared to its length and width, consistent with

the GPoA being a disk-like structure (Pawlowski et al., 2013).

Studies of the M31 satellite system have shown that roughly half of M31’s satellite

galaxies are believed to be associated with this structure. Ibata et al. (2013) report a

high degree of correlation in the line-of-sight velocities of satellite members along the

edge-on orientation, with 13 out of 15 observed satellites within the GPoA having

a consistent sense of rotation such that northern satellites are receding from us,

while the southern satellites are approaching relative to the host. This resembles

the rotating structure around its host galaxy, like the VPOS, thus supporting the

idea that the GPoA is a nonrandom and coherent structure, rather than an isotropic

system. Moreover, Pawlowski et al. (2013) conclude that out of 34 M31 satellites,

19 contribute to the planar structure.

1.2.3 Centaurus A Satellite Plane (CASP)

The study of satellite galaxies has received significant attention from the astronom-

ical community, but much of the focus has been on the dwarf galaxy population

within the Local Group. To gain a more comprehensive understanding of dwarf

galaxies and their properties, it is important to conduct similar studies in other

nearby galaxy groups. This will allow for the evaluation of the generalizability of

the phenomena and further advancement in our understanding of galaxy formation

and evolution. One such proximate galaxy group is the Centaurus group, centered

around the Centaurus galaxy at a distance of 3.6 Mpc (Tully et al., 2009) (with an

alternative estimate of 3.8 Mpc (Harris et al., 2010)). Evidence suggests that there

are planar structures in this group, similar to those in the Local Group, see Figure

1.4. Tully et al. (2015) initially proposed the existence of two nearly parallel planes

of satellite galaxies. These planes are observed nearly edge-on from the Milky Way,

with an average root mean square height of 60 kiloparsecs, long axis dimensions of

approximately 300 kiloparsecs (c/a ratio = 0.2), and a separation of around 300

kiloparsecs. However, new discoveries of dwarf galaxies have weakened the case for

a strict separation between the planes, and the single-plane model (Crnojević et al.,

2014, 2016; Müller et al., 2017), now generally accepted and known as the Centau-

rus A Satellite Plane (CASP), is preferred (Müller et al., 2016). A kinematic study

of the 16 dwarf galaxies around the dominant galaxy Cen A was conducted and

found that 14 of these satellites appear to be co-rotating around their host galaxy,
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Figure 1.4: Centaurus A satellite plane (CASP) observation in edge-on view shows
the best fit of the satellite galaxy plane as a dashed line with its width as a dotted
line. Satellite velocities are represented as blue downward triangles for approaching
and red upward triangles for receding satellites in the plane, while crosses mark
satellites with unavailable velocities. Shaded areas indicate areas with significant
observational limitations (Pawlowski, 2018).

.

as judged by their line-of-sight velocities, while the remaining two show different

behavior. The satellites in the north of Cen A appear to be moving towards the

MW, while those in the south are moving away, similar to what is observed in the

Great Plane of Andromeda (GPoA)(Müller et al., 2018).

1.3 Origin of Plane of Satellites

The exact origin of these planes of satellites is not fully understood and is an active

area of research in astrophysics. However, various hypotheses have been proposed

to explain the phenomenon of planes of satellite galaxies, but three of them that are

majorly discussed are shown in Figure 1.5). The first is the accretion hypothesis,

which suggests that satellites are accreted onto the host galaxy along a preferred

plane due to the anisotropic nature of the large-scale structure of the universe.

The second hypothesis is the accretion of dwarf galaxies in groups. The third is the

tidal alignment hypothesis, formed from the debris thrown out by galactic collisions.
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Pawlowski (2018)

Filamentary Accretion Group Infall Tidal Dwarf Galaxies

Figure 1.5: Illustrations of three possibilities for the formation of satellite galaxy
planes. On the left, accretion of dwarf galaxies from filaments onto the central
galaxy’s halo. In the middle, dwarf galaxies accreted in groups. On the right,
second-generation tidal dwarf galaxies formed from the tails of interacting galaxies
(Pawlowski, 2018).

These would naturally form along the plane of the collision, potentially leading to

a planar arrangement.

It is important to note that the available evidence supporting each of these hy-

potheses is inconclusive, and further research is necessary to achieve a comprehensive

understanding of the underlying causes. While some studies have provided evidence

that supports one or more of these hypotheses, other studies have also presented

evidence that contradicts or challenges these hypotheses. Each of the hypotheses

put forward to explain the phenomenon of planes of satellite galaxies has its own

unique merits and demerits, which will be examined in further detail in the following

analysis.

1.3.1 Filamentary accretion

One of the possible explanations for the phenomenon of planes of satellite galaxies

is that they were preferentially accreted along large, cosmic filaments (Lovell et al.,

2011). As per the ΛCDM model, large galaxies form at the intersections of dark

matter filaments. These filaments are thought to be the locations where dark matter

density is highest and result in the formation of the first galaxies. This model also

suggests that smaller dwarf galaxies form along these filaments and eventually, under

the gravitational pull, fall towards the larger galaxies. This process could potentially

explain the correlation of galaxy positions in the universe.

However, one of the main issues with this hypothesis is that the filaments found

in cosmological simulations are significantly thicker compared to the observed struc-

tures. In order for the filamentary accretion process to fully explain the observed

correlation of galaxy positions, the filaments would need to be as thin as the ob-

served structures, which have been observed to be less than 14 kpc. The size of

the filaments in the simulations, on the other hand, are typically on the order of

500-1,000 kpc. This discrepancy makes it unlikely that the filamentary accretion

11



process can fully explain the observed correlation of galaxy positions in the universe

(Vera-Ciro et al., 2011).

Additionally, the study by Pawlowski et al. (2012) found that the filamentary

accretion origin of the VPOS of the Milky Way satellites could be ruled out. They

found that the coherence of the sub-halo orbital poles in high-resolution cosmological

simulations is not sufficient to explain the alignment of the MW satellite orbits.

This further highlights the challenges faced by the filamentary accretion theory in

fully explaining the phenomenon of satellite galaxies. Despite these challenges, the

filamentary accretion theory remains a significant area of research, and ongoing

studies aim to address these challenges and refine our understanding of the origin

and formation of satellite galaxies.

1.3.2 Group Infall

The accretion of satellites from a common infalling group of dwarf galaxies is another

mechanism proposed for the formation of satellite planes (Lynden-Bell and Lynden-

Bell, 1995). This hypothesis suggests that a group of dwarf galaxies could have

fallen into the host galaxy’s halo. If these satellites share a specific orbital plane

and have similar orbital characteristics, such as orientation, energy, and specific

angular momentum, they will likely maintain their alignment when they accrete

onto the host galaxy. Samuel et al. (2021) found that the probability of satellite

planes forming is higher when a heavy satellite is present, which is often accompanied

by smaller satellites.

According to D’Onghia and Lake (2008), the Magellanic Clouds and seven of

the eleven dwarf galaxies around the MW may have accreted as a group of dwarfs

that were later disrupted in the Galaxy’s halo. (Li and Helmi, 2008) found that

the observed correlation in the orientation of subhaloes’ angular momentum leads

to disc-like configurations. They found that if all subhaloes are assimilated from a

single group, there is a high probability of obtaining a disc-like distribution (approx-

imately 80 percent). However, for assimilation from only two groups, the chance of

obtaining a distribution as planar as observed is about 40 percent. This idea was

further supported by research that utilized Gaia proper motion data and discovered

a considerable number of satellite galaxies in the LMC’s own system. It has also

been found that several observed VPOS member satellites, such as Carina and Leo

I, are situated in regions that are inaccessible to LMC satellites. This suggests that

the formation of the VPOS may not be solely explained by the accretion of a group

from the LMC (Nichols et al., 2011).

Moreover, the group-infall theory can be extended to major mergers between two

host galaxies. Smith et al. (2016) have shown that such mergers have the potential

to generate very thin and stable planes of satellites. They demonstrated that a

merger with a mass ratio of 1:2 can result in a plane of satellites with diameters of

150 kpc and a thickness of 10-40 kpc, which can remain stable for up to 6 Gyr.

However, the group infall scenario is at odds with observational evidence from

the local Universe, which shows that associations of dwarf satellites are much more
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extended, with sizes on the order of 200 kpc, as opposed to the narrow thickness

(15-30 kpc) predicted by the group infall scenario (Metz et al., 2009).

1.3.3 Tidal Dwarf Galaxies

This scenario focuses on the possibility that the observed dwarf galaxies may actu-

ally be tidal dwarf galaxies (TDGs). TDGs are small, self-gravitating systems that

are believed to form from material stripped from larger parent galaxies during colli-

sions or interactions. These galaxies tend to form in the tidal tail and move along its

plane, leading to a common orbital direction and the formation of a coherent plane

of satellites (Kroupa et al., 2005; Pawlowski et al., 2012). This explanation may

help account for why satellite galaxies of the Milky Way and other large galaxies

are often found in thin planes, rather than being randomly distributed (Kroupa,

2012; Hammer et al., 2013). The Evolution and Assembly of Galaxies and their

Environments (EAGLE) cosmological hydrodynamic simulation supports this sce-

nario by reproducing the formation of TDGs in the tidal tails of interacting galaxies

(Ploeckinger et al., 2018). The simulation also predicts that TDGs should be mostly

dark matter-free.

However, observations of some of the best candidates for TDGs in the Local

Group, such as the dwarf spheroidal galaxies (dSphs), have shown high velocity

dispersions relative to their luminosities, leading to mass-to-light ratios that are

greater than 10 solar masses per solar luminosity, indicating that they are dark-

matter dominated systems (McConnachie, 2012). This discrepancy between the

predicted and observed properties of TDGs raises questions about the validity of

the TDG scenario.

Several potential solutions have been proposed to address this issue, including

the possibility of observational errors or incorrect assumptions about equilibrium in

dSphs. Other solutions involve modifying the properties of dark matter or switching

to a modified gravity framework. Although these solutions offer potential explana-

tions, they would require significant revisions to our current understanding of dark

matter and galaxy formation.

1.4 Motivation

As previously discussed, the study of satellite galaxies, particularly those orbiting

the Milky Way and Andromeda galaxies, has been a significant area of research in

astrophysics due to their intriguing properties. A central challenge in this field is the

accurate determination of the orbital parameters of these satellites. This task neces-

sitates a comprehensive understanding of multiple critical parameters, including the

satellites’ positions, velocities, and the gravitational potential of their host galaxies.

A major complication arises from the fact that many of these parameters are not

sufficiently constrained, leading to substantial uncertainties in analyses (Pawlowski

et al., 2017). While Gaia has revolutionized our understanding of Milky Way dwarf

galaxies by providing increasingly accurate measurements of proper motions (Fritz
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et al., 2018; Gaia et al., 2018), a significant amount of measurement uncertainty

still remains. These uncertainties necessitate careful consideration in analyses, as

they can obscure any correlations. Previous research, such as the works of Maji

et al. (2017) and Sawala et al. (2023), have suggested that the satellite plane may

be unstable or a mere coincidental alignment, but these studies often overlooked

the impact of measurement uncertainties. Therefore, it is imperative to account for

these measurement errors in any analysis of satellite galaxy orbits. Ignoring or un-

derestimating these errors can lead to incorrect interpretations or conclusions about

the dynamics and stability of satellite planes. The incorporation of measurement

uncertainties, particularly in proper motion data, is essential for achieving a more

realistic and reliable understanding of the satellite galaxies’ orbital behaviors.

To address this issue, this master’s thesis proposes a novel method: using com-

puter generated simulations to model the orbits of test satellite galaxies around

a host galaxy under controlled initial conditions. The test satellites are forward-

integrated, and then ’mock-observed’ by introducing a wide range of uncertainties

in proper motion and other quantities, followed by backward integration. This ap-

proach aims to explore the potential impact of these uncertainties on the satellite

plane. By analyzing the resulting mock observations, we hope to gain valuable in-

sights into the orbital properties of satellite galaxies. This research will enhance our

understanding of the evolution of the satellite plane and contribute significantly to

our knowledge of galaxy formation and evolution.

This thesis is structured into several distinct chapters, each focusing on a critical

aspect of the research. Chapter 2, titled Methodology, details the specific ap-

proaches and techniques employed in the study, including the computer simulations

and modeling processes. Chapter 3, Initial Setup, delves into the initial conditions

and parameters set for the simulations, explaining their selection and relevance to

the study. Chapter 4, Results and Discussion, presents the findings of the re-

search, including the data obtained from the simulations and a thorough analysis

of these results, highlighting the implications and insights gained. Finally, Chapter

5, Summary and Conclusion, provides a comprehensive summary of the entire

research, drawing conclusions from the findings, discussing the implications of the

study, and suggesting potential areas for future research. This structure ensures a

clear and logical flow, guiding the reader through the stages of the research from

methodology to conclusions.
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Chapter 2

Methodology

In this section I will focus on discussing the useful and important concepts in order

to set up a plane of satellite galaxies orbiting around a host galaxy.

2.1 Coordinate System

Throughout the project, various coordinate systems were utilized to determine the

precise positions of the host galaxy and its test satellite galaxy. One of the most

commonly used coordinate systems in astrophysics is the cylindrical coordinates. In

the cylindrical coordinate system, the position of any celestial object is defined using

three coordinates: the radial distance R from the z-axis, the azimuthal angle ϕ, and

the height z above the xy-plane. This system is particularly useful for problems

exhibiting cylindrical symmetry. When setting up disc-like structures, this system

offers control over initial parameters to establish a planar structure. Therefore, I

have used the cylindrical coordinate system in my simulated environment to emulate

a similar structure and to position test satellites around the host galaxy.

In terms of the Cartesian coordinate system (x, y, z), the Cylindrical coordinate

system can be expressed as follows:

x = R cosϕ , (2.1)

y = R sinϕ , (2.2)

z = z , (2.3)

and

R =
√

x2 + y2 , (2.4)

ϕ = atan2(y, x) , (2.5)

z = z , (2.6)

and their corresponding velocities are:
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vx = vR cosϕ− vϕ sinϕ (2.7)

vy = vR sinϕ+ vϕ cosϕ (2.8)

vz = vz . (2.9)

b = 90°

b = -90°

   Galactic 
    Center Sun l = 180°

l = 270°

l = 90°

l = 0°
   Galactic 
    Center Sun

Figure 2.1: Two images showing the Galactic coordinate frame system. On the left,
Galactic latitude (b) is shown, measured from the Galactic equator to the Galactic
poles. The North Galactic Pole is at b = 90°, and the South Galactic Pole is at b =
-90°. While, the right panel illustrates the Galactic longitude (l) that goes from 0°to
360°, measured eastward around the equator in degrees. In both of these panels, the
reference point is the Sun.

2.1.1 Position of the Milky Way

For the study of the Milky Way and its satellite galaxies, the Galactic Coordinate

System is a widely used reference framework, as illustrated in Figure 2.1. In this

system, the Sun is positioned at the origin. This reference system comprises two

main components: the galactic latitude (b) and galactic longitude (l). The galactic

latitude (b) ranges from +90° to -90°. It indicates the angle of an object above or

below the galactic plane. On the other hand, the galactic longitude (l) measures the

angle of an object westward along the galactic equator. Galactic longitude extends

from 0° to 360°, increasing in a counterclockwise direction. This coordinate system

is especially useful for exploring the structure of the solar neighborhood. However,

for more comprehensive studies of the galaxy and its surrounding halo objects, the

Galactocentric coordinate system is often more advantageous. This system centers

on the Milky Way’s core, using it as the primary reference point, as shown in Figure

2.2.

In order to transform galactic coordinates to Galactocentric coordinates, deter-

mining the Sun’s distance, R⊙, from the Galactic Center (GC) is important for
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various areas of astronomy. Over the past few decades, numerous efforts have been

made to calculate this distance. Several studies have relied on the S2 star, a mas-

sive, young main-sequence B star located in close proximity to the Milky Way’s

supermassive black hole. The initial measurement yielded a value of R⊙ = 7.94 ±
0.42 kpc (Eisenhauer et al., 2003), which was subsequently updated to R⊙ = 7.62 ±
0.32 kpc (Eisenhauer et al., 2005). Furthermore, Gillessen et al. (2017) reported a

distance of R⊙ = 8.32 ± 0.07 ± 0.14 pc, with the first being the statistical error and

second the systematic error. More recently, the detection of gravitational redshift

from Sgr A* in the S2 spectra was reported. Utilizing this data, the updated value

for R⊙ was estimated as 8.122 ± 0.031 kpc, with a statistical error only (Abuter

et al., 2018).

Galactic
  Center SunR

z

R

r

Figure 2.2: Galactocentric coordinate frame system with Galactic Center (GC) as
the reference point. Sun lies at R⊙ distance away from the center. To locate any
object in this system, R, distance from GC, z, height above midplane, ϕ, azimuthal
angle are used. Whereas, r is Galactocentric distance.

Additionally, research has established that the Sun’s position in the Milky Way

is not precisely in the galactic mid-plane. Since the last century, it has been known

that the Sun is actually positioned a few parsecs north of this plane. This elevation,

z⊙, is crucial for accurately determining our location within the galaxy. Efforts to

measure z⊙ have been diverse, ranging from analyses of the neutral hydrogen layer

to the study of star and cluster distributions. For instance, a 1960 study by Gum

et al. (1960) estimated z⊙ = 4 ± 12 pc. Later, using the distribution of B0-B5 stars,

Stothers and Frogel (1974) calculated z to be 24 ± 3 pc. Other studies, like that of

Janes and Adler (1982), employed the spatial distribution of 114 open clusters older

than 108 years, finding z⊙ to be around 75 pc, assuming a solar distance of 8 to 9 kpc

from the galactic center. Moreover, Joshi (2005) obtained z⊙ = 22.8 ± 3.3 pc above

the plane through the reddening analysis. Máız-Apellániz (2001), using O-B5 stars,

measures z⊙ = 24.2 ± 1.7 ± 0.4 pc, with the former being the random error and the

latter the systematic error. More recently, Joshi (2007), through analysis of Young

Open Clusters, estimated z⊙ = 17 ± 3 pc. Additional methods have contributed

further; from the observation of γ-rays, Siegert (2019) estimated z⊙ = 15 ± 17 pc.
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In a related vein, several attempts have been made to estimate the Sun’s velocity.

Dehnen and Binney (1998), using Hipparcos data, determined the solar motion

relative to the Local Standard of Rest (LSR), with (U, V, W)⊙ = (10.00 ± 0.36, 5.23

± 0.62, 7.17 ± 0.38) kms−1, where U, V, and W are the velocity components towards

the Galactic Center, in the direction of the Milky Way’s rotation, and towards the

North Galactic Pole, respectively. Furthermore, Reid et al. (2009), using direct

parallax measurements, estimates (U, V, W)⊙ = (10.3, 15.3, 7.7) kms−1. Schönrich

et al. (2010), by comparing the local stellar kinematics to a chemodynamical model,

estimated (U, V, W)⊙ = (11+0.69
−0.75, 12.24

+0.47
−0.47, 7.25

+0.37
−0.36) kms−1.

Figure 2.2 shows the Galactocentric cylindrical polar coordinates, R, ϕ, and z,

to specify the location of test satellite galaxies. The parameter R represents the

distance from the Galactic center in the disk plane, while the height above the

midplane is denoted by z, with positive values of z indicating the direction towards

the north Galactic pole. The azimuthal angle ϕ is measured from the direction

pointing towards the Sun.

2.2 Milky Way Potentials

The Milky Way, like other galaxies, possesses a complex structure predominantly

influenced by gravitational forces. Understanding the gravitational potential is es-

sential for monitoring the motion of its satellite galaxies and other celestial bodies

within and around our galaxy. This potential is derived from the mass distribution

of the Milky Way, which can be broken down into several components: the central

bulge, the disk, and the dark halo. Notably, distinct potential models are used to

represent each of these components individually, reflecting their unique attributes

and influences.

2.2.1 The Galactic Disk

The Galactic disk, a flattened structure, comprises the majority of the Galaxy’s total

stellar mass, including stars, gas, and dust. Extensive studies have been conducted

since the last century to explore the dynamics of the Milky Way’s disk using various

astrophysical models. One of the earliest and simplest is the Kuzmin disk model

(Kuzmin, 1956). Initially introduced by Kuzmin in 1956 and later independently

rediscovered by Toomre in 1963 (Toomre, 1963), it represents the gravitational po-

tential as follows:

Φ(R, z)kuzmin = − GM√
R2 + (|z|+ a)2

, (2.10)

where G is the gravitational constant, M the mass, R the radial distance in the

plane of the disk, z the vertical distance, and a a model parameter that sets the

characteristic scale of the disk’s thickness. In the Kuzmin model, a ≥ 0.

At a point far from the disk (i.e., when both R and |z| are much larger than a),

the Kuzmin model, Φ(R, z)kuzmin, approximates a point-mass potential:
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Φ(R, z)point ≈ − GM√
R2 + z2

= −GM

r
, (2.11)

where r is the radial distance from the point to the center of the disk.

While the Kuzmin model effectively represents a razor-thin disk, it requires mod-

ification to realistically depict the Milky Way with a non-zero vertical thickness.

Introducing the scale height, b, as an additional parameter leads to the more com-

prehensive Miyamoto-Nagai model (Miyamoto and Nagai, 1975), expressed as:

Φ(R, z)Miyamoto = − GM√
R2 + (

√
z2 + b2 + a)2

. (2.12)

The corresponding density component is:

ρ(R, z)Miyamoto =

(
b2M

4π

)
aR2 +

(
3
√
z2 + b2 + a

) (√
z2 + b2 + a

)2(
R2 + (

√
z2 + b2 + a)2

)5/2
(z2 + b2)3/2

. (2.13)

Setting a = 0 in the Miyamoto-Nagai model yields the Plummer spherical po-

tential (Plummer, 1911), and setting b = 0 recovers the Kuzmin model, representing

a thin disk.

2.2.2 Dark Matter Halo

The Galactic Dark Matter Halo, encircling the stellar disk of the Milky Way, is a

crucial component containing a significant portion of the Galaxy’s mass. This halo,

predominantly composed of dark matter, plays a vital role in the dynamics and

structure of the Galaxy.

Dark halos can be modeled using extensions of spherical two-power density mod-

els:

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α
(2.14)

A diverse range of models emerge from varying α and β. For example, setting β =

4 with different α values yields the Dehnen models with simple analytic properties

(Dehnen, 1993). The Jaffe model (Jaffe, 1983) is obtained with α = 2 and β = 4,

while the Hernquist model (Hernquist, 1990) arises from α = 1 and β = 4. Similarly,

the NFW model, named after Navarro, Frenk, & White (Navarro, 1996), is defined

with β = 3 and α = 1. The NFW model provides a spherically symmetric density

profile for dark matter halos:

ρNFW(r) =
ρ0

r
rs

(
1 + r

rs

)2 , (2.15)

where r is the radial distance from the center of the halo, rs the scale radius,

and ρ0 the characteristic density. The NFW profile is known for its cusp-like center,

where the density increases sharply towards the halo’s core.
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An alternative model, the Einasto profile (Einasto, 1965), describes the dark

matter distribution with a smoother central density profile:

ρEinasto(r) = ρ−2 exp

{
− 2

α

[(
r

r−2

)α

− 1

]}
, (2.16)

where ρ−2 is the density at a characteristic radius r−2, and α is a parameter that

influences the steepness of the profile.
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Figure 2.3: Normalized composite rotation curve of Milky Way and its components
(bulge, disk, and halo contributions).

2.2.3 Bulge

Another important component of the Milky Way is its Galactic Bulge, a densely pop-

ulated central region. The Galactic Bulge is characterized by a high concentration of

older, metal-rich stars and exhibits a complex structure (Wegg and Gerhard, 2013).

Over time, several models have been proposed to determine the mass distribution

within the Galactic Bulge.

While the bulge is often assumed to have a spherically symmetric mass distri-

bution, following the de Vaucouleurs law, it can be described by spheroidal models.

One such example is the Hernquist model (Hernquist, 1990), a density-potential

pair, which provides insights into such distribution.

ρH =
ρb(

r
ab

)(
1 + r

ab

)3 (2.17)

and,
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ϕH = − σ2
b

1 + r
ab

(2.18)

where ab is the scale length, ρb is the characteristic density (ρb =
ρ2b

2πa2b
), and σb

is the characteristic velocity of the bulge.

However, recent studies suggest the actual structure of the Galactic Bulge might

be more complex than what the Hernquist model alone can describe. Some studies

use an axisymmetric approximation to describe the Galactic bulge, which has the

density profile (McMillan, 2016):

ρb =
ρ0,b

(1 + r/r0)α
exp

[
−
(

r

rcut

)2
]

(2.19)

where ρ0,b is the scale density, rcut the cut-off radius, and α the exponent of the

power-law.

2.3 Plane fitting

In this study, I initially distribute test satellites randomly within a three-dimensional

space to simulate a plane of satellite galaxies, as described in Chapter 3. Subse-

quently, the next step involves performing plane fitting. For this purpose, a viable

method is the unweighted plane-fitting technique outlined by (Metz et al., 2007).

This method commences with the calculation of the moment of inertia matrix of

the satellite distribution, followed by its diagonalization. The process begins by

determining the centroid, r0, of the data points:

r0 =
1

N

N∑
i=1

ri

Subsequent to this, an eigenvalue analysis of the moment of inertia tensor, T0,

is conducted for the position vectors, r̂i = ri − r0, i = 1 . . . n (Metz et al., 2007;

Pawlowski et al., 2013).

T0 =
N∑
i=1

[
(ri − r0)

2 · 1− (ri − r0) · (ri − r0)
T
]

In this formula, 1 denotes the unit matrix and rT is the transposed version of the

vector r. The square-root of the eigenvalues of the moment of inertia indicates the

extent along three axes (a, b, c) of the fitted ellipsoid to the satellite distribution.

These values are proportional to the rms deviation relative to the eigenvectors of T.

The eigenvector corresponding to the largest eigenvalue defines the normal of the

plane, encompassing the centroid. Meanwhile, the eigenvectors corresponding to the

intermediate and smallest eigenvalues indicate the directions of the intermediate and

major axes of the distribution, respectively. Consequently, the axial ratios c/a and

b/a are determined. A small value of c/a suggests two possibilities: if b/a is large,
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it indicates an oblate distribution resembling a thin plane; if b/a is similarly small

(c/a ≈ b/a), it suggests a narrow prolate distribution resembling a filament-like

shape (Metz et al., 2007).

Figure 2.4: Example of plane fitting over N random points in space. Left: Edge-on
view. Right: Face-on view.

2.4 Proper Motion

To determine the motion of a galaxy precisely, both its direction and speed are

crucial. Spectroscopy is used to track the motion of a star or galaxy as it approaches

or recedes from the observer. This is done by analyzing the shift in the wavelength

of its emitted light due to its velocity, a phenomenon known as the Doppler effect.

However, it’s essential to note that radial velocity measures only one dimension. To

comprehend how a star or galaxy moves tangentially across the sky, the concept

of proper motion is commonly employed. Proper motion represents the apparent

angular motion of an object across the plane of the sky, measured in arcseconds per

year, resulting from its actual physical movement through space relative to distant

background stars. For accurate measurements, one needs at least two observations

of the object’s position, separated by a known interval of time. Historically, these

observations would have been taken using photographic plates, but today, digital

detectors like CCDs are used to measure them. Moreover, Measurement of proper

motion is time-consuming task, because for many objects, their proper motion is

less than an arcsecond per year. In order to detect such small angular changes,

observations must often be separated by many years, or even decades. This task

becomes even more challenging when observing distant objects. The further an

object is from Earth, the smaller its apparent motion appears, even if its absolute

velocity is high.

Among the 60 satellite galaxies, which include both classical satellites and others,

the Hubble Space Telescope (HST) has successfully determined the proper motion of

11 galaxies associated with our Milky Way. To detect the proper motions of ultra-
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faint galaxies, data from Gaia becomes crucial as it provides the most accurate

information about their positions (Redd, 2018). However, detecting the proper

motion of satellite galaxies poses challenges due to their considerable distance from

us. This distance introduces uncertainties in the data, which must be taken into

account when analyzing the information. Table 2.1 presents the satellite galaxies of

the Milky Way located at a radial distance of 300 kpc. The first column lists the

names of the satellites, followed by their galactocentric coordinates in the second

and third columns. The fourth column provides information about the heliocentric

distances of these satellite galaxies, including measurement uncertainties. Columns

five, six, and seven detail the line-of-sight velocity and proper motions in RA and

Dec, along with their respective systematic errors.

Figure 2.5: The evolution of the proper motion of the 11 classical satellites of the
Milky Way over time is depicted. Different symbols indicate the mode of data ac-
quisition, whether through ground-based observations (Ground), observations from
the Hubble Space Telescope (HST), data from Gaia DR2 (Gaia), or via the stellar
redshift gradient method (SRG). With updated data, proper motion uncertainties
are continuously decreasing (Pawlowski and Kroupa, 2020).

.

Generally, data comes with two types of errors: random (or statistical) errors

and systematic errors. Random errors, such as instrumental noise or those from

other sources, acts as variability between different measurements of the same data.

These errors can be largely reduced by taking repeated measurements and applying

statistical analysis. Systematic errors, on the other hand, are consistent, repeatable

errors that induce a bias in the measurements. They cannot be reduced simply

by collecting more data, as with random errors. Such errors can skew the data and

lead to false conclusions. Although Gaia has revolutionized data, it also carries both

random and systematic errors in its astrometric parameters, such as proper motion

and parallax.
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The Figure 2.5 shows the smallest reported uncertainties associated with proper

motion measurements for the 11 classical satellite galaxies from 2007 to 2018. Here,

ϵµ represents the average of the errors presented for both components of proper

motion. The lines on the graph represent the lowest reported uncertainties in proper

motion available in published literature at the beginning of each year. Various

symbols denote different detection methods, including ground observations, Hubble

Space Telescope (HST), SRG, and Gaia. The graph clearly illustrates that Gaia

DR2 has significantly contributed to reducing proper motion errors. The Gaia DR2

indicated proper motion systematic uncertainties at approximately 0.035 to 0.066

masyr−1 (Gaia et al., 2018; Helmi et al., 2018), which in Gaia ER3, it managed to

decreased by a factor of at least two (Li et al., 2021).
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Table 2.1: Adapted from Sawala et al. (2023), this table displays Milky Way’s
satellite galaxies located within 300 kpc away from the Milky Way. Column 1
shows the name of Satellite galaxies, Columns 2 and 3 detail the galactic longitude
and latitude of these satellites. Column 4 lists the heliocentric distances along
with their uncertainties. Column 5 includes the line-of-sight velocities and their
respective uncertainties. Finally, columns 6 and 7 present the proper motions in
Right Ascension and Declination, including their uncertainties.

Satellite l° b° r⊙ [kpc] Vlos [kms−1] µα∗ [masy−1] µδ [masy−1]
Sagittarius I 5.57 -14.17 26.0 ± 2.0 140.0 ± 2.0 -2.692 ± 0.001 -1.359 ± 0.001
LMC 280.47 -32.89 51.0 ± 2.0 262.2 ± 3.4 1.85 ± 0.03 0.234 ± 0.03
SMC 302.80 -44.30 64.0 ± 4.0 145.6 ± 0.6 0.797 ± 0.03 -1.22 ± 0.03
Draco I 86.43 34.71 76.0 ± 6.0 -291.0 ± 0.1 -0.01 ± 0.01 -0.14 ± 0.01
Ursa Minor 104.98 44.81 76.0 ± 4.0 -246.9 ± 0.1 -0.16 ± 0.01 0.06 ± 0.01
Sculptor 287.53 -83.16 83.9 ± 1.5 111.4 ± 0.1 0.081 ± 0.005 -0.136 ± 0.004
Sextans 243.51 42.27 92.5 ± 2.2 224.2 ± 0.1 -0.44 ± 0.02 0.09 ± 0.02
Carina I 260.11 -22.22 105.6 ± 5.4 222.9 ± 0.1 0.48 ± 0.01 0.13 ± 0.01
Fornax 237.26 -65.67 147.0 ± 9.0 55.3 ± 0.1 0.380 ± 0.002 -0.410 ± 0.004
LeoII 220.17 67.23 233.0 ± 15.0 78.5 ± 0.6 -0.12 ± 0.06 -0.17 ± 0.06
LeoI 225.98 49.12 258.2 ± 9.5 282.5 ± 0.1 -0.06 ± 0.07 -0.18 ± 0.08
AntliaII 264.86 11.25 132.3 ± 6.7 290.7 ± 0.5 -0.05 ± 0.04 0.04 ± 0.05
AquariusII 55.11 -53.01 107.9 ± 3.3 -71.1 ± 2.5 -0.0 ± 0.16 -0.2 ± 0.16
BootesI 358.09 69.64 66.0 ± 3.0 102.2 ± 0.8 -0.47 ± 0.04 -1.07 ± 0.03
BootesII 353.75 68.86 42.0 ± 1.6 -117.1 ± 7.6 -2.25 ± 0.21 -0.63 ± 0.15
Canes VenaticiI 74.32 79.82 210.0 ± 6.0 30.9 ± 0.6 -0.26 ± 0.05 -0.06 ± 0.03
CanesVenaticiII 113.58 82.70 160.0 ± 7.0 -128.9 ± 1.2 -0.34 ± 0.11 -0.35 ± 0.10
CarinaII 269.98 -17.14 37.4 ± 0.4 477.2 ± 1.2 1.84 ± 0.03 0.11 ± 0.03
CarinaIII 270.01 -16.85 27.8 ± 0.6 284.6 ± 3.25 2.99 ± 0.08 1.49 ± 0.1
ColumbaI 231.62 -28.88 182 ± 18 153.7 ± 5.0 0.21 ± 0.09 -0.14 ± 0.1
Coma BerenicesI 241.86 83.61 42.0 ± 1.5 98.1 ± 0.9 0.5 ± 0.05 -1.67 ± 0.04
CraterII 282.91 42.03 117.5 ± 1.1 87.5 ± 0.4 -0.17 ± 0.04 -0.09 ± 0.02
DracoII 98.29 42.88 20.0 ± 3.0 -347.6 ± 1.75 1.06 ± 0.17 0.96 ± 0.18
GrusI 338.68 -58.24 120.2 ± 11.1 -140.5 ± 2.0 -0.05 ± 0.12 -0.41 ± 0.14
GrusII 351.14 -51.94 53.2 ± 5.2 -110.0 ± 0.5 0.48 ± 0.06 -1.41 ± 0.09
Hercules 28.73 36.87 132.0 ± 6.0 45.2 ± 1.09 -0.13 ± 0.07 -0.39 ± 0.06
HorologiumI 271.39 -54.73 79.0 ± 7.0 112.8 ± 2.55 0.87 ± 0.05 -0.58 ± 0.05
HorologiumII 262.47 -54.14 78.3 ± 7.2 168.7 ± 12.9 0.89 ± 0.23 -0.21 ± 0.25
HydraII 295.62 30.46 151.0 ± 8.0 303.1 ± 1.4 -0.26 ± 0.13 -0.05 ± 0.12
HydrusI 297.42 -36.75 27.6 ± 0.5 80.4 ± 0.6 3.77 ± 0.03 -1.55 ± 0.03
LeoIV 265.44 56.51 154.0 ± 5.0 132.3 ± 1.4 -0.20 ± 0.13 -0.26 ± 0.12
LeoV 261.85 58.54 173.0 ± 5.0 172.1 ± 2.2 -0.11 ± 0.11 -0.21 ± 0.10
PiscesII 79.21 -47.11 183.0 ± 15.0 -226.5 ± 2.7 0.07 ± 0.11 -0.26 ± 0.11
ReticulumII 266.28 -49.72 31.4 ± 1.4 64.8 ± 0.5 2.39 ± 0.03 -1.3 ± 0.03
Reticulum III 273.88 -45.65 92.0 ± 13.2 274.2 ± 7.5 0.05 ± 0.21 -0.09 ± 0.2
Sagittarius II 18.94 -22.90 73.4 ± 1.0 -177.3 ± 1.2 -0.65 ± 0.07 -0.96 ± 0.04
SegueI 220.49 50.42 23.0 ± 2.0 208.5 ± 0.9 -1.59 ± 0.23 -3.5 ± 0.21
SegueII 149.43 -38.14 36.6 ± 2.45 -40.2 ± 0.9 1.68 ± 0.13 0.12 ± 0.08
TriangulumII 140.90 -23.83 28.4 ± 1.6 -381.7 ± 1.1 0.62 ± 0.15 0.42 ± 0.11
TucanaII 328.04 -52.35 57.5 ± 5.3 -129.1 ± 3.5 0.94 ± 0.05 -1.22 ± 0.06
TucanaIII 315.38 -56.18 25.0 ± 2.0 -102.3 ± 0.4 -0.02 ± 0.03 -1.67 ± 0.03
TucanaIV 313.29 -55.29 48.3 ± 4.2 15.9 ± 1.8 0.63 ± 0.13 -1.54 ± 0.11
TucanaV 316.31 -51.89 55.4 ± 8.7 -36.3 ± 2.5 -0.1 ± 0.2 -1.01 ± 0.23
Ursa MajorI 159.44 54.39 97.3 ± 5.85 -55.3 ± 1.4 -0.56 ± 0.06 -0.68 ± 0.08
Ursa MajorII 152.46 37.44 34.7 ± 2.1 -116.5 ± 1.9 1.72 ± 0.05 -1.84 ± 0.06
WillmanI 158.57 56.78 38.0 ± 7.0 -12.8 ± 1.0 0.36 ± 0.1 -1.04 ± 0.18
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Chapter 3

Initial Setup

This chapter introduces the initial parameters used throughout the thesis. It will

explain how the satellites are arranged around their host galaxy and how they are

numerically integrated. Additionally, it also discusses how different ranges of un-

certainties are chosen for Proper Motions and Distances along with different Milky

Way potentials. This chapter serves as a comprehensive guide, shedding light on

the fundamental aspects that form the basis of this work. All codes for this work

used the Python programming language.

3.1 Plane Setup

To set up a plane of satellites, it is crucial to position the test satellites correctly

in three dimensions. The shape of the distribution, whether it is flat or spherical,

depends on how these satellites are arranged around the host galaxy. The initial

conditions of these satellites play a significant role in forming a flat structure. For

this research, I am using the Milky Way and its distribution of satellites as a refer-

ence. I aim to replicate a similar arrangement in this study. The Milky Way’s plane

of satellites, VPOS, has a radius of about 250 kpc and a root mean square thickness

ranging from 20 to 30 kpc. To simulate this, I am using a cylindrical coordinate

system to randomly generate Nsat test satellites, aligned with the co-orbiting satel-

lite plane, with distance from the host galaxy, R, ranging from 20 to 250 kpc and

height, z, between 0 and 20 kpc, and azimuthal angle, ϕ, ranging from 0 to 2π.

To generate the random values for the distance, R, the Von Neumann rejection

algorithm, also known as rejection sampling, is used. It is a statistical technique

used to generate random samples from a desired probability distribution. Generally,

it involves three main steps:

• First, start generating a sample from a relatively simple distribution.

• Check whether the generated sample fits the target distribution. If it does,

keep the sample you want to sample from. If not, reject it.

• If the generated sample is rejected, repeat the first step until a required ac-

ceptable sample is obtained.
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Figure 3.1: A graphical comparison of the radial distance distributions of satellite
galaxies, contrasting simulated test satellites in our model with observed data. Fig-
ure Presents the Cumulative Distribution Function (CDF) for these two datasets.

To produce the radial distance distribution, the power-law distribution function

is used:

f(r) = rα (3.1)

The cumulative distribution function (CDF) for this is derived by integrating

the radial density distribution function across a sphere, given by:

F (r) =

∫
f(r

′
)× 4πr

′2dr
′

(3.2)

From here, through inverse transform sampling or the inverse CDF method, the

random samples corresponding to the radial distribution are drawn. In equation

3.2, r
′
is a variable of integration, and the multiplication with 4πr

′2 accounts for the

spherical volume element, r represents the radial distance, while α is an exponent

dictating the behavior of the distribution in equation 3.1.

In this study, α = −3, which indicates a higher likelihood of finding test satel-

lites closer to the host galaxy. This effectively means that there is a denser con-

centration of satellite galaxies nearer to the host galaxy which decreases with large

distances. This kind of distribution is useful for mimicking the observed distribution

of the Milky Way’s satellites. A Kolmogorov–Smirnov (K–S) test was conducted to

compare the radial distribution of randomly generated test satellites with the dis-

tribution of observed satellites. The aim was to check if the two distributions were

statistically similar. Upon analysis, the results indicated that the p-value obtained

was greater than the significance threshold of 0.05. This suggests that there is no

strong evidence to reject the null hypothesis, implying that the distributions of the

randomly generated test satellites and the observed satellites do not exhibit signifi-

cant differences, and the datasets may come from the same distribution. Figure 3.1

shows the CDF of a randomly generated radial distribution and that of the observed
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Figure 3.2: Face-on (left) and Edge-on (right) views ofNsat = 25 randomly generated
test satellite points represented by different colors. Here, star symbol represents the
host galaxy.

data.

Once the required random Nsat satellites arranged around a host galaxy, these

are then converted to the Cartesian coordinate system, see Figure 3.2 for face-on

and edge-on view of the randomly distributed Nsat = 25 test satellites around a

host galaxy. With this step, the initial triaxility or the flatness of the system was

measured by using the Tensor of Inertia method described in Chapter 2.

3.2 Velocities

In the simulation of the galaxy system, determining the velocities of the satellites

is a fundamental aspect that drives their dynamic behavior. For that purpose,

understanding the initial velocities of the satellites is a critical factor, because these

initial velocities influence their subsequent trajectories within the simulated galaxy

system. In the cylindrical coordinate system, each test satellite needs three unit

vectors in three different directions - radial, tangential and perpendicular.

To get the radial unit vector for each satellite, the position vector is normalized.

This helps in defining the direction in which a satellite is moving away from or

towards the center of the galaxy.

ri = (xi,yi, zi) (3.3)

|ri| =
√

|x2
i| + |y2

i| + |z2i| (3.4)

r̂i =

(
xi

|ri|
,
yi

|ri|
,
zi
|ri|

)
(3.5)

Where r̂i is the radial unit vector for satellite i. xi, yi, and zi are the satellite’s
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Figure 3.3: 3D plot of all Nsat = 25 randomly generated test satellites. For each
satellite, radial, perpendicular and tangential velocity component is shown by red,
green and blue color respectively. Where, host galaxy is represented by black star
symbol at origin.

Cartesian coordinates and |ri| is the magnitude of the radial vector.

To find the unit vectors in the tangential direction, first I get the normal unit

vector to the plane which can be obtained by using the Tensor of Inertia algorithm.

n̂ = (êx, êy, êz) (3.6)

Then, using cross product of the radial unit vectors and the normal vector to

the satellite plane, I get the tangential unit vectors.

t̂i = r̂i × n̂ (3.7)

Whereas, the perpendicular unit vectors can be obtained by calculating the cross

product of radial and tangential units vectors.

p̂i = r̂i × t̂ (3.8)
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In vector representation, they can be written as:

vtani = |vtani |.t̂i (3.9)

vradi = |vradi |.r̂i (3.10)

vperpi = |vperpi|.p̂i (3.11)

Figure 3.3 displays the Nsat test satellites in 3D. For each satellite, three vectors

– radial, perpendicular, and tangential – are illustrated, each represented by a dif-

ferent color. Initially, both |vperpi| and |vradi| are set to zero, indicating no motion

in radial and perpendicular directions. This means only the tangential component is

relevant. Satellites are initialized with a tangential speed equal to the gravitational

potential’s circular velocity, guaranteeing the circular orbits. To make orbits eccen-

tric, the tangential unit vectors of all satellites are rotated by an angle θ around the

perpendicular unit vector, as shown in Table 3.2. For each test satellite, the values

for θ are drawn from a uniform distribution. I used Rodrigues’ rotation formula

to rotate the tangential unit vector. To rotate t̂i around p̂i, we cross t̂i with R(θ).

Here, R(θ) is:

Rû(θ) = eũθ (3.12)

Rû(θ) = I+ ũ sin θ + ũ2(1− cos θ) (3.13)

Rû(θ) =

 cos(θ) + u2x(1− cos(θ)) uxuy(1− cos(θ))− uz sin(θ) uxuz(1− cos(θ)) + uy sin(θ)

uyux(1− cos(θ)) + uz sin(θ) cos(θ) + u2y(1− cos(θ)) uyuz(1− cos(θ))− ux sin(θ)

uzux(1− cos(θ))− uy sin(θ) uzuy(1− cos(θ)) + ux sin(θ) cos(θ) + u2z(1− cos(θ))

 .

(3.14)

where I is the 3× 3 identity matrix and u us the antisymmetric matrix.

ũ =

 0 −uz uy

uz 0 −ux

−uy ux 0

 (3.15)

Thus, the new tangential unit vector and tangential velocity becomes:

t̂θ,i = t̂i ×Rû(θ) (3.16)

vtan θi = |vtani |.t̂θ,i (3.17)

Once I have the radial vradi , perpendicular vperpi , and tangential vtani velocity

components, I can convert them into the Cartesian coordinate system. This allows

us to determine how the satellite is moving in the x, y, and z directions.
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vx,i = vradi,x + vtan θi,x + vperpi,x (3.18)

vy,i = vradi,y + vtan θi,y + vperpi,y (3.19)

vz,i = vradi,z + vtan θi,z + vperpi,z (3.20)

These equations allow us to fully describe the motion of a satellite in the sim-

ulated galaxy system, taking into account its radial, tangential and perpendicular

velocity components, as well as any eccentricities introduced into its orbit.

3.3 Integration

For the numerical integrations, I rely on Galpy (Bovy, 2015), which is a strong and

helpful package in Python that offers many useful features. It provides a comprehen-

sive range of functionalities to explore galaxy dynamics, including orbit integration,

potential and force modeling, action-angle calculations, and coordinate transforma-

tions.

3.3.1 Milky Way Mass

For numerical integration, understanding the gravitational potential and mass dis-

tribution of the Milky Way is pivotal for integrating the orbits of test satellites.

Despite extensive research over the past century, the exact distribution of the Milky

Way’s mass still remains a topic of debate. Various methods have been employed to

estimate the total mass of the Milky Way, including the analysis of the orbits of the

Magellanic Clouds, kinematic tracers such as globular clusters, stellar halo stars and

satellite galaxies, the timing argument technique, and abundance-matching studies.

Current results offer estimations between 0.5−3×1012M⊙, which vary based on the

method used and the underlying assumptions made (Bland-Hawthorn and Gerhard,

2016).

The Milky Way’s potential is complex, resulting from the combined contributions

of the central nucleus, bulge, disk, and surrounding halo. While the nucleus, bulge,

and disk are predominantly baryonic in nature, the exact nature of the halo remains

unknown and is thought to be composed of dark matter. Due to its unknown nature,

it becomes challenging to compute its exact mass directly, and its presence is inferred

solely from its influence on its surroundings.

Wilkinson and Evans (1999) presented an estimation for the Milky Way mass

within 50 kpc, approximating it at M(50kpc) = 0.54 ×1012M⊙. Using the data from

the SDSS/SEGUE survey, Kafle et al. (2012) employed observations of Blue Horizon-

tal Branch (BHB) stars to determine the MW’s mass within a 25 kpc radius, yielding

M(25kpc) = 0.21 ×1012M⊙, with an associated virial mass of Mvir = 0.9× 1012M⊙.

Küpper et al. (2015) offered further insights, using data from the tidal stream of

the MW globular cluster Palomar 5 to produce an estimate of M(19kpc) = 0.21
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×1012M⊙. Gaia revolutionized the data with significant improvements in parallaxes

and proper motions, allowing for more accurate 3D velocity measurements. Thus,

using globular cluster data from Gaia DR2, Posti and Helmi (2019) found it to be

M(20kpc) = 1.9 ×1011M⊙, with Mvir = 1.3×1012M⊙. Similarly, again by using the

Gaia DR2 data for halo globular clusters, they estimated the mass of the Milky Way

to be M(21.1kpc) = 0.2× 1012M⊙, with Mvir = 1.28× 1012M⊙, and with combined

samples from Gaia and HST they estimated it to be M(39.5kpc) = 0.42 ×1012M⊙
and Mvir = 1.54 × 1012M⊙ (Watkins et al., 2019). Later, using spectral data from

APOGEE with photometric information from WISE, 2MASS, and Gaia, Eilers et al.

(2019) found Mvir = 7.25 ± 0.25 × 1011 M⊙. Following them, Labini et al. (2023),

using Gaia DR3 data and the NFW halo model, estimated Mvir = 6.5 ± 3 × 1011

M⊙ within a virial radius of Rvir = 180 ± 3 kpc. Furthermore, Jiao et al. (2023),

using Gaia DR3 data, found a sharp decrease in the rotational curves of the Milky

Way between 19.5 and 26.5 kpc; by studying them, their total mass estimation of

the Milky Way was revised downwards to 2.06+0.24
−0.13 × 1011 M⊙ only.

Thus, significant uncertainty surrounds the mass of the Milky Way, making it

imperative to account for these ambiguities in mass distribution. Understanding

these uncertainties is crucial, as they directly affect our comprehension of the orbits

of test satellites and, consequently, the inferred orbital stability of the plane of

satellite galaxies. In response to this, my study utilizes three distinct mass models,

each representing a specific Milky Way potential configuration, see Table 3.1.

Table 3.1: Milky Way models

Potential Model Total Mass
MWless 4.8× 1011M⊙
MWfiducial 8× 1011M⊙
MWhigh 11.2× 1011M⊙

3.3.2 Galaxy Potential

Within Galpy, the galpy.potential module features a built-in Milky Way-like po-

tential model known as MWPotential2014, which represents our MWfiducial model

with a virial mass of Mvir = 8.0 × 1011M⊙. The MWPotential2014 is composed of

several components, each following a distinct potential profile to represent differ-

ent parts of the Milky Way. Specifically, the bulge component in MWPotential2014

adopts a power-law density profile, named PowerSphericalPotentialwCutoff. The

disk component is simulated using the MiyamotoNagaiPotential (Miyamoto and

Nagai, 1975), and the dark matter halo is characterized by the NFWPotential

(Navarro et al., 1997).

The Miyamoto-Nagai potential is defined by the equation:

Φ(R, z) = − amp√
R2 + (a+

√
z2 + b2)2

(3.21)
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where amp signifies the amplitude with units of mass density, a is the scale

radius, and b represents the scale height.

The Power-law density spherical potential with an exponential cut-off is given

as:

ρ(r) = amp
(r1
r

)α
exp

(
−
(
r

rc

)2
)

(3.22)

In this equation, amp is the amplitude, rc is the cut-off radius, α indicates the

inner power, and r1 is the reference radius for the amplitude.

The NFW potential is expressed as:

ρ(r) =
amp

4πa3
1

(r/a)(1 + r/a)2
(3.23)

Here, amp and a stand for amplitude and scale radius, respectively.
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Figure 3.4: Rotational curves of the Milky Way for three different potential models:
MWfiducial (blue), MWless (orange), and MWhigh (green) as a function of radial
distance (R) in kiloparsecs.

For the remaining two Milky Way potentials, the MWPotential2014 is adjusted

by scaling the halo mass to achieve the desired mass distribution. Particularly,

MWless model is configured with a halo mass 40% less than the MWfiducial and

MWhigh is 40% greater than that of MWfiducial. This method provides a deeper

insight into the influence of mismatching mass of Milky Way on the behavior and

formation of satellite galaxy systems. Figure 3.4 illustrates the rotation curves

for the three MW models. In this figure, MWhigh is depicted by the green curve,

MWfiducial by the blue curve, and MWless by the orange curve. Notably, the green

curve is flatter than the others. As we move further from the center, the velocity

decrease is less pronounced than would be expected if only visible matter were

present, suggesting a greater mass addition in the halo. In contrast, the orange curve,

representing MWless, shows a more pronounced decline with distance, indicating less
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Figure 3.5: Comparison of eccentricity, (e), distributions across different θ: The
figure presents the eccentricity CDF for three different θtan: 40°, 60°, and 80°from
left to right, respectively. The predominant black histogram in each panel signifies
observed data from (Li et al., 2021), while the overlaid colored CDF represent sim-
ulated results for Nsat test satellites.

mass in the halo. This steeper velocity drop at greater distances implies that this

model accounts for less dark matter in the halo.
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Figure 3.6: Plots showing the mean c/a of Nrealization forward integration. Right:
forward integration when θ = 40°, center: forward integration when θ = 60°, right:
forward integration when θ = 80°.

3.3.3 Forward Integration

To investigate the orbital properties of the simulated satellite galaxies, I integrated

the system forward for 5 Gyr. Table 3.2 provides brief information on this forward

integration. I performed the forward integration for Nrealization = 20 random real-

ization of the initial setup for three different models. Each model has a different

tangential velocity angle; the larger the angle, the more eccentric the orbit becomes.

Each forward integration was conducted using the MWfiducial potential model.

During the forward integration, the eccentricity for all theNsat satellites across all

Nrealization realizations was analyzed. Figure 3.5 displays a comparison of eccentricity
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distributions for θtan = 40°, 60°, and 80°, from left to right, respectively. Apart from

the black Cumulative Distribution Function (CDF), all other colored CDF represent

Nsat test satellites. The eccentricity data for the observed Milky Way satellites from

Li et al. (2021) is over-plotted, as indicated by the black CDF, to compare the

simulated eccentricity with observed Milky Way satellite galaxies. From the graph,

it is evident that the CDF range for Li et al. (2021) spans approximately 0.2 to 1.0.

For the simulated eccentricity, the initial range is between 0.0 and 1.0, which implies

that circular orbits were also included.
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Figure 3.7: This figure illustrates the evolution of the cumulative distribution func-
tion (CDF) of radial distances. The red line represents the initial CDF of radial
distances for random test satellites. The other three lines show the CDFs of the
mean radial distance at 5 Gyr, each corresponding to a different θtan.

To align the simulated eccentricity of orbits with the observed data, values for

all θtan were eventually drawn from a uniform distribution. However, values ranging

between -20°and 20°were excluded to ensure that the contribution of circular orbits

was disregarded. Figure 3.6 illustrates the mean minor-to-major axis ratio, µc/a,

across three θtan configurations. For all the θtan, µc/a lines initially start to decrease

and after 2 Gyr 1, the plane remains stable until the 5 Gyr mark. This region shows

decent stability and is suitable for the analysis of the plane of satellites after mock

observing.

Furthermore, Figure 3.7 depicts the progression of the CDF for radial distances.

It features a red line that illustrates the initial CDF for radial distances of randomly

selected test satellites. Additionally, three other lines are present, each representing

the CDF of the average radial distance at 5 Gyr for various values of θtan. Notably,

there is an evident trend where an increase in θtan corresponds to a rightward shift

in the mean CDF, suggesting that satellites tend to have a greater radial distance.

12 Gyr in Forward integration is 3 Gyr in Backward integration if total time of integration is 5
Gyr.
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Table 3.2: Initial parameters for Forward Integration

Model Nsat θtan Potential Model Nrealization µc/a at 2 Gyr
FI-01 25 40° MWfiducial 20 0.113 ± 0.020
FI-02 25 60° MWfiducial 20 0.112 ± 0.011
FI-03 25 80° MWfiducial 20 0.105 ± 0.013

3.3.4 Uncertainties

As stated in Chapter 2 that one of the objectives of this project is to investigate

the effect of uncertainties in proper motions and in distances. Thus these are the

orbital properties which will be mocked observed. Table 3.3 shows the list of ranges

of uncertainties in proper motions and in distances considered in this work. For

proper motions, the uncertainties ranges is selected between none to extreme - 0 to

0.12 masyr−1. This choice is motivated by the Gaia DR2 recorded proper motion

uncertainties that approximate to 0.035 to 0.066 masyr−1, which in Gaia ER3 is

decreased to 0.0175 to 0.033 masyr−1. Thus, it becomes good choice to test effect

of uncertainties recorded by Gaia, as well as two extremes. Simultaneously, the

range of uncertainties in distance is chosen between 0% to 5%. Again, 0% is chosen

to test the system without any uncertainties, whereas approximately 5% is chosen

because Li et al. (2021) reports an error of about 5% in their values for the observed

Milky Way satellites. Thus, this gives a wide combinations of uncertainties in proper

motion and distance to test, from no error to some extreme effects.

Table 3.3: Parameters for backward Integration with uncertainties for each model
of Table 3.2.

Model ϵµ [masyr−1] ϵdist [%] Potentialforward Potentialbackward Mrealization

BI-01 ±0.00 0 MWfiducial MWfiducial 600
BI-02 ±0.04 0 MWfiducial MWfiducial 600
BI-03 ±0.08 0 MWfiducial MWfiducial 600
BI-04 ±0.12 0 MWfiducial MWfiducial 600
BI-05 ±0.00 0 MWfiducial MWless 600
BI-06 ±0.04 0 MWfiducial MWless 600
BI-07 ±0.08 0 MWfiducial MWless 600
BI-08 ±0.12 0 MWfiducial MWless 600
BI-09 ±0.00 0 MWfiducial MWhigh 600
BI-10 ±0.04 0 MWfiducial MWhigh 600
BI-11 ±0.08 0 MWfiducial MWhigh 600
BI-12 ±0.12 0 MWfiducial MWhigh 600
BI-13 ±0.00 5 MWfiducial MWfiducial 600
BI-14 ±0.04 5 MWfiducial MWfiducial 600
BI-15 ±0.08 5 MWfiducial MWfiducial 600
BI-16 ±0.12 5 MWfiducial MWfiducial 600
BI-17 ±0.00 5 MWfiducial MWless 600
BI-18 ±0.04 5 MWfiducial MWless 600
BI-19 ±0.08 5 MWfiducial MWless 600
BI-20 ±0.12 5 MWfiducial MWless 600
BI-21 ±0.00 5 MWfiducial MWhigh 600
BI-22 ±0.04 5 MWfiducial MWhigh 600
BI-23 ±0.08 5 MWfiducial MWhigh 600
BI-24 ±0.12 5 MWfiducial MWhigh 600
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3.3.5 Backward Integration

After completing the forward integration, it is essential to record the orbital param-

eters such as right ascension, declination, proper motion in right ascension, proper

motion in declination, distance, and line-of-sight velocity for each test satellite sys-

tem at the final snapshot of all simulation realizations. This documentation is

crucial as these parameters serve as the foundation for the subsequent mock observ-

ing and backward integration process. The backward integration begins by ”mock

observing” these parameters, which involves adding uncertainties to these recorded

parameters.

µα∗new = µα∗ + ϵµ

µδnew = µδ + ϵµ

Distnew = Dist + ϵdist

(3.24)

Equation 3.24 provides the updated proper motions and distance parameters,

incorporating their respective uncertainties. For ϵµ, the random uncertainties are

drawn from the Gaussian distribution with a width corresponding to the selected

error. In contrast, for ϵdist, a percentage error is chosen. Table 3.3 details the ranges

of uncertainties in these parameters. Following mocked observations, the system

is integrated backward for 5 Gyr, repeating this process Mrealization = 30 times for

each of the 20 forward integrations (resulting in 600 total backward integrations)

to return to its initial state. This procedure is conducted using three different

Milky Way potential models, with their masses detailed in Table 3.1. Each row in

Table 3.1 represents a combination of various parameters that could influence the

inferred stability of the satellite plane. Overall, with 4 proper motion uncertainties,

2 distance uncertainties, and 3 potential models, there are 24 model combinations for

each θtan. Each model undergoes 600 backward integrations, amounting to a total

of 43,200 backward integrations. The results of these integrations will be presented

in the next chapter.
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Chapter 4

Results and Discussion

This chapter presents an analysis of my simulation results that are crucial for under-

standing the stability of the satellite’s plane. The chapter is organized into distinct

sections, each one dedicated to a different aspect of the study. Section 4.1 inves-

tigates the solely effect of uncertainties in proper motion on the satellite’s plane.

Section 4.2 focuses on the effect of distance uncertainties only. Section 4.3 explores

the influence of various Milky Way potentials on orbital stability. Lastly, Section 4.4

examines the combined effects of all three types of errors to evaluate their collective

influence 1.

The findings discussed in this chapter are based on simulations using the most

eccentric model setup for forward integration - θtan = 80°- which closely resembles

the observed eccentricity of Milky Way satellites. Discussions regarding simulations

with less eccentric orbits are detailed in the Appendix A.

4.1 Proper Motion Uncertainties

This section presents the results from simulations focusing exclusively on the role

of uncertainties in proper motion on the inferred stability of the orbital plane.

As defined in Chapter 3, the backward integrations were performed with proper

motion uncertainties ranging from 0.00 to 0.12 masyr−1, incrementing in steps of

0.04 masyr−1. Furthermore, the backward integrations were carried out using the

MWfiducial potential, the same as that used in the forward integrations. Figure 4.1

shows the results in four panels, each corresponding to a distinct level of proper

motion uncertainty. Within each panel, the x-axis represents the time evolution,

with forward integrations extending from left to right and backward integrations

from right to left, while the y-axis depicts the minor-to-major axis ratio of the or-

bital plane. The average of the 20 forward integrations is represented by the black

dash-dotted line in each panel, with the individual forward integrations represented

by gray lines. For each set of 20 forward simulations, there are 30 backward integra-

tions, resulting in a total of 600 backward integrations, which are represented in a

light green color, while the average of these 600 backward integrations is indicated

1Click here to see the playlist of movies illustrating the evolution of test satellites for backward
integration.
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by the green dashed line in each panel. Similary, Table 4.1 is an extended version

of Table 3.3 and quantitatively translates the outputs of µc/a. It includes two extra

columns: ∆c/a, which represents the difference between µc/a from backward integra-

tion compared to forward integration after 3 Gyr in backward, and fc/a, denoting the

fractional change of µc/a in backward integrations compared to forward integrations.
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Figure 4.1: Four panels illustrating the influence of proper motion uncertainties
on the plane of satellite galaxies. Each panel shows forward (black dashed lines)
and backward (green dashed lines) integrations, also indicated by arrows. The
uncertainties in proper motions are as follows: 0.00 masyr−1 in the upper left panel,
0.04 masyr−1 in the upper right panel, 0.08 masyr−1 in the lower left panel, and 0.12
masyr−1 in the lower right panel.

The upper left panel in Figure 4.1 illustrates the simulation outcomes when the

proper motion error, ϵµ, is set to 0.00 masyr−1. Under this condition, the mean

minor-to-major ratio, µc/a, obtained from backward integrations, aligns perfectly

well with the mean minor-to-major ratio, µc/a, obtained from the forward integra-

tions, as shown in Figure 4.1, where each forward integration line is over-plotted by

the backward integrations. This shows a high degree of predictability and suggests

that the orbital plane remains stable and unaltered in scenarios where the proper

motion are measured with perfect accuracy. It also implies that, at least in the

theoretical framework of the simulation, the inherent dynamics of the satellite sys-

tem are deterministic enough to allow for precise backtracking of its orbital path

when initial conditions are precisely known. These results serve as a control scenario

against which the other panels, which include some amount of proper motion errors,

can be compared. Model BI-01 from Table 4.1 shows similar behavior in that, even

after 3 Gyr of backward integration, the difference between forward and backward,

∆c/a = 0.000 masyr−1, and fc/a = 1.000, meaning that both forward and backward

integration yield the same output when proper motion uncertainties remain at 0.000

masyr−1.
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Table 4.1: Combined parameters and metrics for backward integration models at 3
Gyr for θtan = 80°, see Table A.1 and Table A.2 for θtan = 40°and 60°respectively.

Model ϵµ [masyr−1] ϵdist [%] Potentialbackward ∆c/a [masy−1] fc/a Nsat > 300 kpc

BI-01 ± 0.00 0 MWfiducial 0.000 ± 0.013 1.000 ± 0.121 1.400 ± 0.917
BI-02 ± 0.04 0 MWfiducial 0.073 ± 0.053 1.694 ± 0.509 1.533 ± 1.013
BI-03 ± 0.08 0 MWfiducial 0.173 ± 0.091 2.641 ± 0.866 1.968 ± 1.096
BI-04 ± 0.12 0 MWfiducial 0.244 ± 0.112 3.316 ± 1.065 2.573 ± 1.142
BI-05 ± 0.00 0 MWless 0.028 ± 0.046 1.270 ± 0.436 6.400 ± 1.497
BI-06 ± 0.04 0 MWless 0.064 ± 0.049 1.612 ± 0.469 6.627 ± 1.459
BI-07 ± 0.08 0 MWless 0.132 ± 0.071 2.258 ± 0.676 7.033 ± 1.384
BI-08 ± 0.12 0 MWless 0.207 ± 0.098 2.968 ± 0.934 7.363 ± 1.433
BI-09 ± 0.00 0 MWhigh 0.014 ± 0.017 1.132 ± 0.160 0.350 ± 0.477
BI-10 ± 0.04 0 MWhigh 0.098 ± 0.061 1.932 ± 0.577 0.508 ± 0.594
BI-11 ± 0.08 0 MWhigh 0.208 ± 0.102 2.977 ± 0.974 0.910 ± 0.791
BI-12 ± 0.12 0 MWhigh 0.257 ± 0.107 3.445 ± 1.019 1.510 ± 0.934
BI-13 ± 0.00 5 MWfiducial 0.018 ± 0.019 1.168 ± 0.184 2.050 ± 1.071
BI-14 ± 0.04 5 MWfiducial 0.082 ± 0.053 1.779 ± 0.506 2.353 ± 1.119
BI-15 ± 0.08 5 MWfiducial 0.177 ± 0.090 2.680 ± 0.858 2.900 ± 1.136
BI-16 ± 0.12 5 MWfiducial 0.243 ± 0.111 3.315 ± 1.062 3.612 ± 1.165
BI-17 ± 0.00 5 MWless 0.054 ± 0.060 1.512 ± 0.572 8.100 ± 1.578
BI-18 ± 0.04 5 MWless 0.084 ± 0.060 1.803 ± 0.570 8.337 ± 1.524
BI-19 ± 0.08 5 MWless 0.148 ± 0.075 2.407 ± 0.711 8.610 ± 1.530
BI-20 ± 0.12 5 MWless 0.205 ± 0.083 2.950 ± 0.792 8.915 ± 1.538
BI-21 ± 0.00 5 MWhigh 0.017 ± 0.022 1.163 ± 0.208 0.900 ± 0.768
BI-22 ± 0.04 5 MWhigh 0.099 ± 0.064 1.944 ± 0.608 0.920 ± 0.742
BI-23 ± 0.08 5 MWhigh 0.207 ± 0.102 2.965 ± 0.971 1.357 ± 0.905
BI-24 ± 0.12 5 MWhigh 0.259 ± 0.111 3.460 ± 1.053 1.965 ± 1.022

In the upper right panel at the level of the Gaia systamatic uncertainties, ϵµ, is

set to 0.04 masyr−1. Here, a slight uncertainty in proper motion leads to a visible

divergence between the mean axial ratios of forward and backward integrations. The

mean axial ratio, µc/a, from the backward integration does not align as closely with

the forward integration as it did in the first case, when there were no uncertainties.

This suggests a decrease in the predictability and inferred stability of the orbital

plane with the introduction of proper motion errors. Furthermore, the scatter of

individual backward c/a values around the mean increases. This is also evident

from Model BI-02 in Table 4.1, which shows that with the introduction of ϵµ = 0.04

masyr−1, ∆c/a shifts from 0.000 masyr−1 to 0.073 masyr−1, and fc/a becomes 1.694.

In the lower left panel, proper motion uncertainties are increased to 0.08 masyr−1.

In this scenario, there is a further widening gap between the means of backward and

forward integrations, as illustrated by the greater separation of the dashed lines.

The mean axial ratio, µc/a, from backward integration shows a more pronounced

deviation from the mean axial ratio of the forward integration. This indicates a

further decline in the predictability and stability of the orbital plane as proper

motion uncertainty increases. Additionally, the individual backward integration

lines are more scattered, demonstrating that the uncertainties are beginning to have

a dominate impact on the inferred stability of the satellite plane. Moreover, Table

4.1 also validates that in Model BI-03, ∆c/a shifts yet again from 0.073 masyr−1 to

0.173 masyr−1, and fc/a doubles.

In the lower right panel, where the proper motion error reaches 0.12 masyr−1,

the divergence between the forward and backward integration means, shown by the

dashed lines, is the most pronounced of all cases presented. The mean axial ratio,

µc/a, from backward integration shows a significant divergence from the forward

integration mean, implying a severe reduction in the orbital plane’s predictability
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and stability with the highest proper motion uncertainty examined. Moreover, the

scatter of individual backward c/a is the most wide. It shows that the system’s

dynamics are highly chaotic under such uncertainties, making reliable influences

on the satellite’s orbital evolution becomes impossible. This case is represented by

Model BI-04 of Table 4.1, it shows that ∆c/a = 0.244 masyr−1 and fc/a = 3.316.

The left panel in Figures 4.2 and 4.3 illustrates ∆c/a and fc/a as functions of

proper motion uncertainties, respectively 2. Each figure also demonstrates the im-

pact of θtan at 40°, 60°, and 80°. These figures reveal that an increase in proper

motion uncertainties results in higher values of ∆c/a and fc/a across all θtan values.

However, a greater increase in θtan shows a more pronounced impact. The points

there seem to have a linear behaviour, so we fitted a line and the R-square of the

fiited line comes out to be between 0.9 - 1.0 for all the cases, indicates that both

∆c/a and fc/a increases liearly with proper motion uncertainties, see Table A.3. For

a detailed analysis of θtan at 40° and 60°, please refer to Appendix A.1.
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Figure 4.2: Two figures illustrate ∆c/a as a function of proper motion errors under
MWfiducial. Within each figure, the effect of eccentricities is represented by lines
with error bars. The left figure represents Model BI-01 to BI-04, and the right
figure represents Model BI-013 to BI0-16, as detailed in Table 4.1.

4.2 Distance Uncertainties

This section presents the results involving uncertainties in distances. Figure 4.4

depicts the evolution of the orbital plane. The mean of c/a for forward integration

is shown in a dotted-dashed black color. Whereas, for backward integration, two

dashed lines are present: the first, without distance uncertainties — 0% represented

in blue color, and the second introduces a 5% uncertainty in distances, represented

in green color. The analysis of the former is already presented in section 4.1, which

represents an ideal state with high predictability and stability for the test satellite’s

plane. However, with the introduction of a 5% distance error — while maintaining

the proper motion error at zero — a new variable is added to the simulation. There

2Here the positions of the error bars for each line slightly along the x-axis has been adjusted so
that error bars that don’t overlap wit each other.
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Figure 4.3: Two figures illustrate fc/a as a function of proper motion errors under
MWfiducial. Within each figure, the effect of eccentricities is represented by lines
with error bars. The left figure represents Model BI-01 to BI-04, and the right
figure represents Model BI-013 to BI0-16, as detailed in Table 4.1.
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Figure 4.4: The figure illustrates the impact of distance uncertainties on the orbital
plane stability of satellite galaxies. The forward integration is represented by a
dotted-dashed black line. In the case of 0% distance uncertainty, the backward
integration closely follows the forward integration, shown in blue. However, with 5%
distance uncertainty, the backward integration, depicted in green, shows a noticeable
divergence in µc/a compared to the forward integration.

is a noticeable effect of distance uncertainties; the system does not return to its orig-

inal state but instead experiences a slight change. Despite this, there is still decent

agreement between the mean backward µc/a and forward µc/a integrations, suggest-

ing that the inferred fundamental orbital evolution is not drastically impacted, even

with the introduction of 5% uncertainties in the distances of the test satellites. It is

also evident from Table 4.1, comparing Model BI-01 and B1-13, both ∆c/a and fc/a
have changed just slightly from 0.000 masyr−1 to 0.018 masyr−1 and 1.000 to 1.168

respectively after 3 Gyr of backward integration.

4.3 Milky Way Model

In the study of galactic dynamics, particularly the stability and evolution of satellite

planes, the potential model adopted for the Milky Way plays a crucial role. Figure

4.5 shows the influence of different Milky Way mass models on the inferred stability
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Figure 4.5: This figure illustrates the µc/a for forward integrations, shown as dotted-
dash lines, alongside µc/a for backward integration under three Milky Way models,
characterized by halo mass. The blue, green, and red dashed lines represent the µc/a

under MWless, MWfiducial, and MWhigh potential models, respectively.

of a satellite plane. By not taking into account uncertainties in proper motion

and distance, the results provide a clear picture of the satellite plane’s fundamental

dynamical behavior when subjected to different Milky Way potential models. The x-

axis shows the time evolution, while the y-axis represents the µc/a of plane of satellite

obtained from the simulations. The black dotted-dashed lines represents the mean

of forward integration under a MWfiducial potential. In contrast, the colored lines

depict the mean backward integration under different Milky Way potentials. The

backward integrations, particularly the green line representing the same MWfiducial

potential, demonstrates a perfect consistency with its forward counterpart, implying

a stable evolution when the Milky Way potential is same, also seen in Model BI-01

in Table 4.1 that ∆c/a that is remains 0.000 masyr−1 even after 3 Gyr, and fc/a =

1.000 . This scenario serves as a benchmark for stability against which other models

are compared. The red line, representing the MWhigh model, exhibits a reasonable

degree of stability, although it does not completely resembles the forward integration,

suggesting some sensitivity to the Milky Way’s mass assumptions. This difference

is shown in BI-09 of Table 4.1, that shows ∆c/a = 0.014 masyr−1 after 3 Gyr, and

fc/a = 1.132. The blue line, representing the MWless mass model, shows a marked

divergence from the other models. Its µc/a initially increases followed by a flattening

trend in the µc/a ratio, this could imply a different dynamical history for the plane

of satellites within such a lower-mass Milky Way potential. Here, for lower-mass

Milky Way potential, ∆c/a = 0.028 masyr−1 after 3 Gyr, and fc/a = 1.270.

These observations underscore the impact of Milky Way mass models on the dy-

namical interpretations of satellite planes. The correlation between the mass of the

Milky Way and the behavior of satellite planes is evident, where higher mass models

tend to show a more stable evolution compared to lower mass models.The precise

measurement of the Milky Way’s mass is thus essential for accurate simulations and

predictions of satellite plane behaviors, which could have broader implications for

understanding galactic formation and evolution.
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4.4 Combined Effect

This section presents a complex scenario combining proper motion uncertainties

with three distinct Milky Way potential models to assess the stability of the satel-

lite plane. Figure 4.6 illustrates the impact of varying degrees of proper motion

uncertainty on the predicted flatness of the satellite distribution over time, with

uncertainties ranging from 0.00 to 0.12 masyr−1. Each panel further shows the im-

pact of Milky Way models on the plane. The analysis for MWfiducial have been

thoroughly discussed in section 4.1. As for the MWhigh model, it generally follows a

similar trend to MWfiducial, but with slightly larger µc/a values in the three scenarios

of proper motion uncertainty due to its higher halo mass, as can be seen in Table 4.1

that both ∆c/a and fc/a for MWhigh is slightly larger than the MWfiducial. However,

in the last panel, where ϵµ values are at their extreme (0.12 masyr−1), the µc/a for

both MWfiducial and MWhigh models appears to be identical. Additionally, Table 4.1

demonstrates that proper motions have a significant effect on both models, and this

effect intensifies with an increase in proper motion errors. This trend is also evident

in both ∆c/a and fc/a, as they increase with rising proper motion errors (see Model

BI-01 to BI-04 for MWfiducial and BI-09 to BI-012 for MWhigh).
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Figure 4.6: This figure comprises four panels, each highlighting the effect of proper
motion uncertainties, ranging from 0.00 to 0.12 masyr−1, on the evolution of µc/a.
Each panel also demonstrates the influence of using different Milky Way potential
models — MWless, MWfiducial, and MWhigh — on the plane’s flattening.

MWless exhibits a different impact. For all proper motion uncertainties, the µc/a

initially increases, but after a certain period, the trend starts to flatten. Except for

ϵµ = 0.000 masyr−1, the evolution of µc/a under all the other cases remains smaller

than the other two Miky Way models. From Table 4.1, both ∆c/a and fc/a shows

smaller values than those of MWhigh and MWfiducial.

Furthermore, the evolution of the satellite plane with 0.12 masyr−1 proper motion
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Figure 4.7: This figure is akin to Figure 4.6, but it now includes distance uncer-
tainties. It consists of four panels, each highlighting the effects of different proper
motion uncertainties, ranging from 0.00 to 0.12 masyr−1, on the evolution of µc/a.
Furthermore, each panel sheds light on how varying Milky Way potential models —
MWless, MWfiducial, and MWhigh — influence the flattening of the plane.

uncertainty appears to show a same trend across all three Milky Way models: an

initial increase followed by a flattening trend in the µc/a values, but with a wider

spread, suggesting that higher proper motion uncertainties overshadow the effect of

different Milky Way models, at least for MWfiducial and MWhigh. This observation

indicates that, at higher levels of proper motion uncertainty, the distinctions between

the various Milky Way potential models become less pronounced, as the increased

uncertainty tends to dominate the dynamics of the satellite plane.

Building upon this understanding, Figure 4.7 introduces an additional layer of

complexity by incorporating distance errors into the analysis. The upper left panel

depicts the effect of distance uncertainties on the plane of satellite galaxies within

three Milky Way models. The µc/a for backward integration, obtained from the

MWfiducial, is analyzed in 4.2, where it shows a slight deviation from the forward

integration, as indicated by the black dashed line. Although the effect is not signif-

icant, it is still noticeable. A similar impact of distance uncertainties is observed in

the µc/a of MWhigh and MWless, where it slightly increases the axial ratio from the

forward integration. In the remaining three panels, uncertainties in proper motion,

specifically 0.04, 0.08, and 0.12 masyr−1, are introduced. These panels display re-

sults incorporating both proper motion and distance uncertainties across the three

Milky Way models. The behavior in these three panels is consistent with that ob-

served in Figure 4.6, showing an additional, minor increase in the µc/a ratio for all

three Milky Way models due to the inclusion of distance uncertainties. Models BI-

13 to BI-24, shows this behaviour when 5% of uncertainties were induced, although

there is not prominent impact. A comparison of the left (ϵdist = 0%) and right (ϵdist
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= 5%) panels in Figures 4.2 and 4.3 also reveals a notable impact of distance errors.

However, these errors did not significantly alter the plane of the satellite.
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Figure 4.8: Figure shows the comparative analysis of galactic orbital axes under
Varying proper motion uncertainties and Milky Way Models. This figure illustrates
the mean values of 600 major, minor, and intermediate axes calculated through
backward integration. It is organized into 12 panels, each representing a different
combination of proper motion uncertainty (ranging from 0.00 to 0.12 masyr−1) and
Milky Way model. The rows indicate the varying levels of proper motion uncertainty,
while each column corresponds to one of the three axes: major (first column), in-
termediate (second column), and minor (third column). The influence of different
Milky Way models is denoted by distinct colors as per the legend, allowing for a
clear comparison of their impacts on the galactic orbital axes over time.

4.5 Analysis of Individual Axes

The behavior of the minor-to-major axial ratio, µc/a, in the MWless Milky Way

potential model differs from other models, warranting a closer examination of how

the extent of the test satellite system changes along its different axes, from major

to minor. Figure 4.8 illustrates the influence of proper motion errors on the mean

values of the three axes: a (major axis), b (intermediate axis), and c (minor axis).

The influence of proper motion is presented row-wise, while the axes are displayed

column-wise in the figure. Each panel further depicts three lines representing the

axes derived from backward integration using three distinct Milky Way potentials.

The impact of using different Milky Way potentials is quite evident, particularly
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in the MWless model, which has a smaller halo mass. Under this model, with zero

proper motion uncertainties, the mean of both the major and intermediate axes

exhibit a pronounced increase over time, whereas the minor axis increases slowly. In

contrast, MWfiducial and MWhigh models demonstrate distinct patterns in the major

and intermediate axes compared to the MWless model, while their minor axes show

similar behavior.
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Figure 4.9: Similar comparative analysis of galactic orbital axes under as shown in
4.8. This figure illustrates the mean values of 600 major, minor, and intermediate
axes calculated through backward integration under distance uncertainties. It is
organized into 12 panels, each representing a different combination of proper mo-
tion uncertainty (ranging from 0.00 to 0.12 masyr−1) and Milky Way model. The
rows indicate the varying levels of proper motion uncertainty, while each column
corresponds to one of the three axes: major (first column), intermediate (second
column), and minor (third column). The influence of different Milky Way models is
denoted by distinct colors as per the legend, allowing for a clear comparison of their
impacts on the galactic orbital axes over time.

In these models, the variations in axis lengths are a direct consequence of changes

in gravitational pull due to mass differences. In the MWhigh model, with increased

mass, all axes become more compact as the structure becomes more gravitationally

bounded. Conversely, in the MWless model, a reduction in mass leads to an elon-

gation of the axes. This suggests that in the MWless model, more test satellites

are drifting away from their host galaxies, causing the system to become unbound.

It is important to note that the MWfiducial model was used as a baseline for the

MWhigh and MWless models, with the halo mass being adjusted by 40% (increased
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and decreased, respectively). However, the response of the axis extents to these ad-

justments is striking, with the Milky Way potential with 40% less halo mass having

a more pronounced effect on the system than the one with a 40% higher halo mass.

This also explains why the axial ratio µc/a showed a distinct behavior in the MWless

potential as observed in section 4.3.

Figure 4.9 presents a similar analysis, but it also incorporates distance uncer-

tainties. Each of the 12 panels in this figure accounts for distance uncertainties,

revealing a trend similar to the previous analysis. However, with the inclusion of

distance errors, each axis in every Milky Way model extends slightly, indicating a

noticeable, though not extreme, effect on the orbital axes.

4.6 Understanding Escaping Satellites

The preceding sections have highlighted a unique behavior of the galactic plane

in the MWless Milky Way model due to its lower halo mass compared to other

models. This section will explore the average number of test satellites that become

unbound (go beyond after certain radial distance) across all Milky Way potentials,

with a particular emphasis on MWless. Figure 4.10 illustrates the average number

of test satellites that surpass a distance of 300 kpc from the galactic center. It

has four panels, each having a different impact of proper motion uncertainties on

it. Within each panel, there are three lines, each representing the impact of a

different Milky Way potential. These results were derived under conditions with

no uncertainties in the distance. In every panel, each model begins with around

2-3 test satellites surpassing the 300 kpc threshold. This happens at the end of

forward integration when Nsat were integrated forward Nrealization= 20 times, leading

to the same starting number in the backward integration. This count varies over

time, influenced by the different Milky Way potentials and varying levels of proper

motion uncertainties. In the upper left panel of Figure 4.10 when there is no proper

motion uncertainties, for MWless, the line initially show a relatively stable number

of satellites that leave the Milky Way. Over time, there is a gradual increase in the

number of test satellites that go beyond 300 kpc, followed by a period of stability.

This pattern suggests that the test satellites are more likely to be ejected from the

low Milky Way potential influence. Unlike the lower mass Milky Way model, the

MWfiducial Milky Way potential model exhibits an opposite behavior; under this

model, the number of test satellites going beyond 300 kpc decreases over time,

and at 5 Gyr, all Nsat test satellites remain under the 300 kpc limit. This trend

is even more pronounced in the MWhigh potential model, where the number of

unbound test satellites progressively diminishes over time due to the higher halo

mass. Furthermore, the other three panels demonstrate the effect of proper motion

uncertainties on satellite dynamics, showing that as uncertainties increase, more

test satellites remains at distances greater than 300 kpc across all models. Proper

motion affects it by increasing the velocities and the energies of satellites and thus

ejecting more test satellites across all the Milky Way potentials.

Additionally, Figure 4.11 displays similar results, but with the inclusion of un-
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Figure 4.10: This figure presents the average number of test satellites surpassing a
300 kpc distance from the galactic center in various Milky Way potential models,
highlighting the impact of proper motion uncertainties inaccuracies on satellite dy-
namics.

certainties in distance measurements in the analysis. A clear effect of distance

uncertainties is evident, further increasing the number of test satellites that exceed

the 300 kpc range, see Table 4.1, column Nsat > 300 kpc for Models BI-05 to BI-08

represent when no distance errors are induced in MWlow, and models BI-17 to BI-20

are those which has distance errors, from these it is clear that with the inclusion of

distance errors at 3 Gyr the system losses more satellites. For θtan = 40°and 60 °see
Appendix A.6.
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Figure 4.11: This figure presents the average number of test satellites surpassing a
300 kpc distance from the galactic center in various Milky Way potential models,
highlighting the impact of proper motion uncertainties and distance measurement
inaccuracies on satellite dynamics.
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Chapter 5

Summary and Conclusion

The presence of a spatially thin and kinematically coherent plane of satellite around

the Milky Way and other massive galaxies have been a subject of debate in as-

trophysical circles for a long time (Lynden-Bell, 1976; Samuel et al., 2021). This

debate stems from the complexities involved in accurately determining the orbital

paths of the satellite galaxies. To calculate the orbits with precision, a comprehen-

sive understanding of several key parameters is essential. These include an accurate

measurement of satellite’s position, distance, line-of-sight velocity, proper motions,

the underlying gravitational pontential of the host galaxy and the Galactocentric

distance of the Sun and its motion relative to the Galactic center. Many of these

crucial parameters, however, remain insufficiently constrained, adding a significant

degree of uncertainty to any analysis (Bland-Hawthorn and Gerhard, 2016; Joshi,

2007; Schönrich et al., 2010). Particularly important is the consideration of mea-

surement errors or uncertainties. These uncertainties, especially in proper motions,

can significantly affect our analyses (Pawlowski, 2021). These uncertainties can

be broadly categorized into statistical and systematic uncertainties. Statistical un-

certainties, often due to random measurement variations, can be reduced through

statistical methods and larger datasets. Systematic uncertainties, on the other hand,

which are not related to random measurement but rather to inherent biases in the

measurement process or instruments, pose a major challenges. Maji et al. (2017)

and Sawala et al. (2023) have indicated that the satellite plane of the Milky Way

galaxy is unstable and may merely be a coincidental alignment. Despite their signif-

icant contributions, a notable limitation in their research is the lack of consideration

for measurement uncertainties, particularly those related to proper motion. These

uncertainties are critical, as they have the potential to significantly alter the out-

comes of studies focusing on the evolution of the Milky Way’s satellite plane. The

proper motion, which remains inadequately defined, is a key factor that could im-

pact the analysis. This highlights the importance of integrating uncertainties into

astrophysical research to ensure a more accurate and reliable conclusion.

Addressing these challenges, this study investigated the inferred stability of the

plane of satellite galaxies, considering the influences of uncertainties in proper mo-

tion, distance, and the impact of various Milky Way potential models. To achieve

this, we employed a sophisticated computer-simulated environment, where satellite
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galaxies orbit the central host galaxy. Satellite galaxies were treated as test par-

ticles, allowing for a detailed analysis of their orbital paths and behavior. This

approach provided a unique advantage, offering the flexibility to manipulate and

control initial conditions and parameters. By adjusting these variables, we could

not only mirror the observed system with high fidelity but also explore hypothetical

scenarios. The simulation results shown and analysed in Chapter 4 were primar-

ily focused on an eccentric model setup (with θtan = 80°), reflecting the observed

eccentricities of the Milky Way satellites. The impact on less eccentric orbits was

also tested and shown in Appendix A. This study broadly tested two cases, one

without the presence of uncertainties in any of these parameters, and other where

some increment of uncertainties are introduced to these parameter.

Proper motion is one of the important parameters for investigating the orbital

behavior of satellite galaxies, as it defines their movement across the sky in right-

ascension and declination. Despite its importance, measuring proper motion accu-

rately is challenging and prone to errors. The Gaia mission, with its DR2 and later

EDR3 releases, has made notable strides in measuring the proper motion of at least

11 classical Milky Way satellites (Gaia et al., 2018). However, measuring proper

motion precisely for fainter satellites remains challenging, and these uncertainties

impact the orbits and inferred stability of the satellite plane. Our analysis in Sec 4.1

revealed that even small proper motion uncertainties significantly impact the satel-

lite plane. As uncertainties increased, a divergence in µc/a forward and backward

integration was observed, suggesting a loss of apparent stability and predictability

in satellite orbits. For uncertainties a the level of Gaia sytsematic uncertainties, a

noticeable impact was observed. However, with further increases, the predictabil-

ity and stability of the satellite system significantly diminished, underscoring the

chaotic nature induced by these uncertainties. With 0.12 masyr−1 uncertainties, the

plane became highly unstable.

We also examined the influence of distance uncertainties in Sec 4.2. By intro-

ducing distance uncertainties, even at a level of 5%, while maintaining zero proper

motion error, we observed an effect on the satellite orbital evolution. The changes,

though less pronounced than those due to proper motion uncertainties, were signif-

icant and indicative of the influence of distance errors.

Another crucial parameter that can significantly affect our understanding of the

plane of satellite galaxies is the Milky Way potential. We used three Milky Way

potential models: MWfiducial with 8 × 1011 solar masses, MWless with a 40% un-

derestimated halo mass, and MWhigh with a 40% overestimated mass compared to

MWfiducial. Results in Sec 4.3 showed that the backward integration for MWfiducial

demonstrated an expected consistency with its forward counterpart, implying stable

evolution of the plane when the Milky Way retains the same potential. However, in

MWhigh, the increased mass of the dark matter halo exerted a stronger gravitational

pull on the test satellites, accelerating their dynamical evolution and affecting the

satellite plane’s stability over time. In the results, this has been observed that, al-

though the system did not drastically altered, the µc/a do not align precisely and

deviates from the forward integration path, suggesting that its stability is not as
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pronounced as in MWfiducial. In contrast, MWlow showed a different behavior. It

initially increases and subsequently flattens, suggesting a dynamic scenario where

the satellite plane becomes more dispersed over time. The analysis of the indi-

vidual mean axes under various Milky Way models showed distinct behaviors, it

was revealed that in the MWlow potential, the individual axes start to expand over

time, indicating a weaker gravitational pull on satellites and resulting in a higher

likelihood of satellites exceeding 300 kpc radial distance, making plane of satellites

unstable. When integrating these Milky Way potential models with proper motion

uncertainties, the results became more complex. Higher uncertainties tended to di-

minish the dynamical affect of satellite planes across different Milky Way models,

suggesting a dominant effect of higher proper motion uncertainties.

These contrasting scenarios show that the mass of the Milky Way is not just

a backdrop for the motion of satellites but is a dynamic and integral factor that

shapes their evolution. The precise mass of the Milky Way, and thus the potential,

therefore holds a crucial importance in modeling and predicting the behavior of

satellite planes. A correct understanding of this mass is important not only for

precisely simulating the orbits of these test satellites but also for constraining the

formation history and evolution of the Milky Way itself. It informs us about the

galaxy’s interaction with its environment, the distribution and nature of dark matter,

and the processes governing galaxy formation on a cosmological scale.

The analysis was also conducted for θtan = 40◦ and 60◦, as detailed in Appendix

A. These levels of eccentricity displayed a comparable trend in µc/a under uncer-

tainties. Notably, these lower ranges of eccentricities have a reduced impact on the

plane.

5.1 Limitation and Future Work

In this study, while providing valuable insights into the impact of various parameters

and Milky Way potentials on the plane of satellite galaxies, its crucial to recognize

certain limitations. A significant caveat is the absence of consideration for the

gravitational effects of massive satellite galaxies like the Large Magellanic Cloud

(LMC) and the Small Magellanic Cloud (SMC). These celestial bodies, owing to

their substantial mass could affect the mass estimates of Milky Way galaxy (Erkal

et al., 2020), and exert significant gravitational forces that can profoundly influence

the Milky Way and it’s surroundings (Vasiliev, 2023), and thus can influence the

stability of the satellite plane. The omission of these influences in the current study

represents a notable limitation in our analysis. Additionally, this study assumes a

spherical dark matter halo; however, it’s important to acknowledge that the halo

could be triaxial (Law et al., 2009), which might have implications for our findings.

Future studies could enhance our understanding by incorporating the gravitational

influence of massive satellite galaxies like the LMC and SMC, as well as considering

different shapes of the dark matter halo. Such an approach would allow for a more

comprehensive analysis of the satellite plane’s dynamics, taking into account the

complexities of real-world scenarios. Additionally, using different mass models also

53



could offer deeper insights into influences of satellite galaxies on the plane’s stability

and evolution. This would not only refine our models but also contribute to a more

nuanced understanding of the gravitational interplay within the Milky Way and

its satellite system. By addressing these aspects, future research can build upon

the current study’s findings, offering a more detailed and accurate depiction of the

dynamics governing satellite galaxies.

5.2 Conclusion

In conclusion, this thesis provides significant insights into the dynamics of satellite

planes within their host galaxy, offering a deeper understanding of evolution, par-

ticularly under the lens of measurement uncertainties. This research has brought to

the forefront the critical impact of even minor uncertainties in orbital parameters

on our understanding of satellite planes. We checked the impact of measurement

uncertainties on the inferred stability of plane of satellites, we found:

• When satellite galaxies’ proper motions are measured with high accuracy (or

ϵµ = 0.00 mas yr−1), we observe that the system remains highly stable .

• At the level of Gaia uncertainties (with ϵµ = 0.04 mas yr−1), the plane begins

to diverge; however, it generally remains well constrained. As the proper

motion uncertainties increase (when ϵµ is 0.04 and 0.12 mas yr−1), the system

becomes highly unstable. The µc/a shows a linear increase with the addition

of more uncertainties.

• Under distance uncertainties, a noticeable effect is observed. However, this

does not dominate the evolution of the satellite plane. Additionally, the impact

of distance uncertainties becomes less significant with higher levels of proper

motion uncertainties.

• The influence of different Milky Way potential models is significant, especially

with MWlow, which has a smaller halo mass compared to the other three mod-

els considered. Due to its lower mass, it struggles to maintain cohesion among

the test satellites, leading to increased radial distances and an extension of its

major, minor, and intermediate axes. However, under larger proper motion

uncertainties, the influence of varying Milky Way potential models diminishes,

as the system exhibits unstable behaviors across all potential models.

Thus, this study emphasizes the necessity of precise determination of proper mo-

tion, distances of satellite galaxies and the Milky Way’s gravitational potential. We

have seen how variations in these quantities can significantly shift our understand-

ing of the evolution of satellite planes. Accurate measurement of is thus vital for

a comprehensive study of its satellite system and for broader insights into galactic

evolution and interactions. However, it is crucial to acknowledge certain limitations

in this research. While providing substantial insights, the study does not encom-

pass all possible variables and scenarios. In essence, while this thesis advances our
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knowledge in the field, it also opens avenues for future research to address these

limitations.
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Abuter, R., Amorim, A., Anugu, N., Bauböck, M., Benisty, M., Berger, J.-P., Blind,

N., Bonnet, H., Brandner, W., Buron, A., et al. (2018). Detection of the gravi-

tational redshift in the orbit of the star s2 near the galactic centre massive black

hole. Astronomy & Astrophysics, 615:L15.

Ade, P. A., Aghanim, N., Alves, M., Armitage-Caplan, C., Arnaud, M., Ashdown,

M., Atrio-Barandela, F., Aumont, J., Aussel, H., Baccigalupi, C., et al. (2014).

Planck 2013 results. i. overview of products and scientific results. Astronomy &

Astrophysics, 571:A1.

Ade, P. A., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C.,

Banday, A., Barreiro, R., Bartlett, J., Bartolo, N., et al. (2016). Planck 2015

results-xiii. cosmological parameters. Astronomy & Astrophysics, 594:A13.

Bland-Hawthorn, J. and Gerhard, O. (2016). The galaxy in context: structural,

kinematic, and integrated properties. Annual Review of Astronomy and Astro-

physics, 54:529–596.

Bovy, J. (2015). galpy: A python library for galactic dynamics. The Astrophysical

Journal Supplement Series, 216(2):29.

Boylan-Kolchin, M., Springel, V., White, S. D., Jenkins, A., and Lemson, G. (2009).

Resolving cosmic structure formation with the millennium-ii simulation. Monthly

Notices of the Royal Astronomical Society, 398(3):1150–1164.

Bullock, J. S. and Boylan-Kolchin, M. (2017). Small-scale challenges to the λ cdm

paradigm. Annual Review of Astronomy and Astrophysics, 55:343–387.
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Lemson, G., Prada, F., Primack, J. R., Steinmetz, M., et al. (2013). The mul-

tidark database: release of the bolshoi and multidark cosmological simulations.

Astronomische Nachrichten, 334(7):691–708.

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich,

P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., et al. (1998). Obser-

vational evidence from supernovae for an accelerating universe and a cosmological

constant. The astronomical journal, 116(3):1009.

Robertson, H. P. (1929). On the foundations of relativistic cosmology. Proceedings

of the National Academy of Sciences, 15(11):822–829.

Rubin, V. C. and Ford Jr, W. K. (1970). Rotation of the andromeda nebula from a

spectroscopic survey of emission regions. The Astrophysical Journal, 159:379.

Samuel, J., Wetzel, A., Chapman, S., Tollerud, E., Hopkins, P. F., Boylan-Kolchin,

M., Bailin, J., and Faucher-Giguère, C.-A. (2021). Planes of satellites around

milky way/m31-mass galaxies in the fire simulations and comparisons with the

local group. Monthly Notices of the Royal Astronomical Society, 504(1):1379–1397.

Sarkar, P., Yadav, J., Pandey, B., and Bharadwaj, S. (2009). The scale of ho-

mogeneity of the galaxy distribution in sdss dr6. Monthly Notices of the Royal

Astronomical Society: Letters, 399(1):L128–L131.

Sawala, T., Cautun, M., Frenk, C., Helly, J., Jasche, J., Jenkins, A., Johansson,

P. H., Lavaux, G., McAlpine, S., and Schaller, M. (2023). The milky way’s plane

of satellites is consistent with λ cdm. Nature Astronomy, 7(4):481–491.

Schönrich, R., Binney, J., and Dehnen, W. (2010). Local kinematics and the local

standard of rest. Monthly Notices of the Royal Astronomical Society, 403(4):1829–

1833.

Siegert, T. (2019). Vertical position of the sun with γ-rays. arXiv preprint

arXiv:1910.09575.

Simon, J. D. (2019). The faintest dwarf galaxies. Annual Review of Astronomy and

Astrophysics, 57:375–415.

Smith, R., Duc, P. A., Bournaud, F., and Sukyoung, K. Y. (2016). A formation

scenario for the disk of satellites: Accretion of satellites during mergers. The

Astrophysical Journal, 818(1):11.

Springel, V., Frenk, C. S., and White, S. D. (2006). The large-scale structure of the

universe. nature, 440(7088):1137–1144.

Springel, V., White, S. D., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., Navarro,

J., Thacker, R., Croton, D., Helly, J., et al. (2005). Simulations of the formation,

evolution and clustering of galaxies and quasars. nature, 435(7042):629–636.

63



Stothers, R. and Frogel, J. A. (1974). The local complex of o and b stars. i. distribu-

tion of stars and interstellar dust. Astronomical Journal, Vol. 79, p. 456 (1974),

79:456.

Toomre, A. (1963). On the distribution of matter within highly flattened galaxies.

Astrophysical Journal, vol. 138, p. 385, 138:385.

Tully, R. B., Libeskind, N. I., Karachentsev, I. D., Karachentseva, V. E., Rizzi, L.,

and Shaya, E. J. (2015). Two planes of satellites in the centaurus a group. The

Astrophysical Journal Letters, 802(2):L25.

Tully, R. B., Rizzi, L., Shaya, E. J., Courtois, H. M., Makarov, D. I., and Jacobs,

B. A. (2009). The extragalactic distance database. The Astronomical Journal,

138(2):323.

Vasiliev, E. (2023). The effect of the lmc on the milky way system. Galaxies,

11(2):59.

Vera-Ciro, C. A., Sales, L. V., Helmi, A., Frenk, C. S., Navarro, J. F., Springel, V.,

Vogelsberger, M., and White, S. D. (2011). The shape of dark matter haloes in

the aquarius simulations: evolution and memory. Monthly Notices of the Royal

Astronomical Society, 416(2):1377–1391.

Walker, A. G. (1935). On the formal comparison of milne’s kinematical system

with the systems of general relativity. Monthly Notices of the Royal Astronomical

Society, Vol. 95, p. 263-269, 95:263–269.

Watkins, L. L., van der Marel, R. P., Sohn, S. T., and Evans, N. W. (2019). Evidence

for an intermediate-mass milky way from gaia dr2 halo globular cluster motions.

The Astrophysical Journal, 873(2):118.

Wegg, C. and Gerhard, O. (2013). Mapping the three-dimensional density of the

galactic bulge with vvv red clump stars. Monthly Notices of the Royal Astronom-

ical Society, 435(3):1874–1887.

White, M. (2001). The mass of a halo. Astronomy & Astrophysics, 367(1):27–32.

White, S. D. and Rees, M. J. (1978). Core condensation in heavy halos: a two-

stage theory for galaxy formation and clustering. Monthly Notices of the Royal

Astronomical Society, 183(3):341–358.

Wilkinson, M. and Evans, N. (1999). The present and future mass of the milky way

halo. Monthly Notices of the Royal Astronomical Society, 310(3):645–662.

York, D. G., Adelman, J., Anderson Jr, J. E., Anderson, S. F., Annis, J., Bah-

call, N. A., Bakken, J., Barkhouser, R., Bastian, S., Berman, E., et al. (2000).

The sloan digital sky survey: Technical summary. The Astronomical Journal,

120(3):1579.

Zwicky, F. (1937). On the masses of nebulae and of clusters of nebulae. The

Astrophysical Journal, 86:217.

64



Appendix A

Analysis of Plane of Satellites

This appendix presents the simulations involving less eccentric orbits. Results and

analysis for θtan = 80 been discussed in detail in Chapter 4. Following a similar

pattern, I will preset the result which are obtained from θtan = 40°and 60°.
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Figure A.1: Four panels illustrating the influence of proper motion uncertainties on
the plane of satellite galaxies. This case represents θtan= 40°. Each panel shows
amount of proper motion errors considered.

A.1 Proper Motion Uncertainties

Figures A.1 and A.2 display results analogous to those in Section 4.1. However,

they differ in that they showcase outcomes for θtan= 40°and 60°, instead of 80°.
These scenarios exhibit comparable patterns. The Figures are segmented into four

panels, each representing different levels of proper motion errors. The c/a ratios

for forward integrations are depicted with black lines, whereas those for backward

integrations are marked in green. Similar to the previously discussed case, it becomes

increasingly difficult to accurately determine the inferred stability of the satellite
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plane as the level of proper motion errors escalates. Table A.1 and Table A.2 includes

two extra columns: ∆c/a, which represents the difference between µc/a from backward

integration compared to forward integration after 3 Gyr in backward, and fc/a,

denoting the fractional change of µc/a in backward integrations compared to forward

integrations.
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Figure A.2: Four panels illustrating the influence of proper motion uncertainties on
the plane of satellite galaxies. This case represents θtan= 60°. Each panel shows
amount of proper motion error considered.
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Figure A.3: This figure presents results for θtan= 40°. The figure illustrates the
impact of distance uncertainties on the orbital plane stability of satellite galaxies.
Forward integration is represented by a dotted-dashed black line, while backward
integration is depicted with a blue and green dashed line.

A.2 Distance Uncertainties

Similarly, Figures A.3 and A.4 display the effects of distance errors on the inferred

stability of the plane of satellites for θtan= 40°and 60°, respectively. The analysis, as
discussed in Section 4.2, indicates that the inclusion of distance errors alters µc/a.

66



However, this does not significantly impact the overall evolution of µc/a, See Table

A.1 and Table A.2.
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Figure A.4: This figure presents results for θtan= 60°. The figure illustrates the
impact of distance uncertainties on the orbital plane stability of satellite galaxies.
Forward integration is represented by a dotted-dashed black line, while backward
integration is depicted with a blue and green dashed line.
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Figure A.5: This figure presents results for θtan= 40°, and illustrates the µc/a for
forward integrations, shown as dotted-dash lines, alongside µc/a for backward inte-
gration under three Milky Way models, characterized by halo mass. The blue, green,
and red dashed lines represent the µc/a under MWless, MWfiducial, and MWhigh po-
tential models, respectively.

A.3 Potential Model

The upper left panel in Figure A.5 and Figure A.6 presents the outputs for θtan=

40°and θtan= 60°respectively. These panels shows the affect of using different Milky

Way potential on the inferred stability of plane of satellite. These outputs follow

the same trend as it was observed in Sec 4.3. See the first column of Figure A.17.
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Table A.1: Combined parameters and metrics for backward integration models at 3
Gyr for θtan = 40°, see Table A.2 and Table 4.1 for θtan = 60°and 80°respectively.

Model ϵµ [masyr−1] ϵdist [%] Potentialbackward ∆c/a [masy−1] fc/a Nsat > 300 kpc
BI-01 ± 0.00 0 MWfiducial 0.000 ± 0.020 1.000 ± 0.180 0.500 ± 0.592
BI-02 ± 0.04 0 MWfiducial 0.042 ± 0.038 1.366 ± 0.337 0.625 ± 0.717
BI-03 ± 0.08 0 MWfiducial 0.122 ± 0.078 2.074 ± 0.687 1.167 ± 0.937
BI-04 ± 0.12 0 MWfiducial 0.199 ± 0.118 2.750 ± 1.042 1.802 ± 1.146
BI-05 ± 0.00 0 MWless 0.015 ± 0.032 1.134 ± 0.280 4.350 ± 1.824
BI-06 ± 0.04 0 MWless 0.048 ± 0.040 1.426 ± 0.353 4.687 ± 1.647
BI-07 ± 0.08 0 MWless 0.112 ± 0.067 1.990 ± 0.592 5.292 ± 1.605
BI-08 ± 0.12 0 MWless 0.179 ± 0.095 2.578 ± 0.836 5.803 ± 1.673
BI-09 ± 0.00 0 MWhigh 0.013 ± 0.018 1.113 ± 0.156 0.000 ± 0.000
BI-10 ± 0.04 0 MWhigh 0.049 ± 0.036 1.430 ± 0.313 0.115 ± 0.334
BI-11 ± 0.08 0 MWhigh 0.132 ± 0.082 2.162 ± 0.719 0.425 ± 0.609
BI-12 ± 0.12 0 MWhigh 0.208 ± 0.113 2.829 ± 0.998 1.008 ± 0.878
BI-13 ± 0.00 5 MWfiducial 0.014 ± 0.017 1.123 ± 0.148 0.750 ± 0.829
BI-14 ± 0.04 5 MWfiducial 0.057 ± 0.042 1.506 ± 0.374 0.965 ± 0.853
BI-15 ± 0.08 5 MWfiducial 0.137 ± 0.083 2.207 ± 0.730 1.672 ± 1.051
BI-16 ± 0.12 5 MWfiducial 0.205 ± 0.106 2.808 ± 0.934 2.305 ± 1.242
BI-17 ± 0.00 5 MWless 0.036 ± 0.041 1.314 ± 0.360 5.800 ± 2.182
BI-18 ± 0.04 5 MWless 0.064 ± 0.044 1.566 ± 0.389 6.513 ± 1.895
BI-19 ± 0.08 5 MWless 0.119 ± 0.061 2.051 ± 0.539 6.923 ± 1.866
BI-20 ± 0.12 5 MWless 0.191 ± 0.087 2.685 ± 0.767 7.483 ± 1.908
BI-21 ± 0.00 5 MWhigh 0.010 ± 0.016 1.091 ± 0.142 0.100 ± 0.300
BI-22 ± 0.04 5 MWhigh 0.053 ± 0.041 1.464 ± 0.362 0.212 ± 0.444
BI-23 ± 0.08 5 MWhigh 0.140 ± 0.090 2.231 ± 0.796 0.768 ± 0.780
BI-24 ± 0.12 5 MWhigh 0.217 ± 0.122 2.910 ± 1.074 1.322 ± 0.937

Table A.2: Combined parameters and metrics for backward integration models at 3
Gyr for θtan = 60°, see Table 4.1 and Table A.1 for θtan = 80°and 40°respectively.

Model ϵµ [masyr−1] ϵdist [%] Potentialbackward ∆c/a [masy−1] fc/a Nsat > 300 kpc
BI-01 ± 0.00 0 MWfiducial 0.000 ± 0.011 1.000 ± 0.097 1.200 ± 0.812
BI-02 ± 0.04 0 MWfiducial 0.064 ± 0.043 1.574 ± 0.387 1.188 ± 0.830
BI-03 ± 0.08 0 MWfiducial 0.159 ± 0.082 2.425 ± 0.738 1.662 ± 0.958
BI-04 ± 0.12 0 MWfiducial 0.244 ± 0.110 3.181 ± 0.991 2.340 ± 1.091
BI-05 ± 0.00 0 MWless 0.007 ± 0.031 1.065 ± 0.275 4.800 ± 1.503
BI-06 ± 0.04 0 MWless 0.050 ± 0.037 1.447 ± 0.335 5.185 ± 1.504
BI-07 ± 0.08 0 MWless 0.123 ± 0.065 2.105 ± 0.583 5.742 ± 1.538
BI-08 ± 0.12 0 MWless 0.202 ± 0.089 2.812 ± 0.799 6.147 ± 1.493
BI-09 ± 0.00 0 MWhigh 0.005 ± 0.015 1.046 ± 0.130 0.450 ± 0.497
BI-10 ± 0.04 0 MWhigh 0.068 ± 0.047 1.607 ± 0.421 0.520 ± 0.580
BI-11 ± 0.08 0 MWhigh 0.176 ± 0.094 2.575 ± 0.845 0.873 ± 0.773
BI-12 ± 0.12 0 MWhigh 0.251 ± 0.106 3.246 ± 0.954 1.390 ± 0.972
BI-13 ± 0.00 5 MWfiducial 0.016 ± 0.013 1.144 ± 0.120 1.350 ± 0.963
BI-14 ± 0.04 5 MWfiducial 0.073 ± 0.046 1.657 ± 0.415 1.532 ± 0.941
BI-15 ± 0.08 5 MWfiducial 0.170 ± 0.084 2.520 ± 0.755 2.275 ± 1.104
BI-16 ± 0.12 5 MWfiducial 0.244 ± 0.107 3.188 ± 0.957 2.977 ± 1.200
BI-17 ± 0.00 5 MWless 0.029 ± 0.038 1.260 ± 0.342 6.900 ± 1.758
BI-18 ± 0.04 5 MWless 0.062 ± 0.040 1.556 ± 0.362 7.378 ± 1.836
BI-19 ± 0.08 5 MWless 0.128 ± 0.063 2.147 ± 0.563 7.723 ± 1.864
BI-20 ± 0.12 5 MWless 0.206 ± 0.090 2.849 ± 0.805 8.092 ± 1.821
BI-21 ± 0.00 5 MWhigh 0.010 ± 0.014 1.087 ± 0.125 0.700 ± 0.640
BI-22 ± 0.04 5 MWhigh 0.078 ± 0.051 1.697 ± 0.461 0.757 ± 0.686
BI-23 ± 0.08 5 MWhigh 0.186 ± 0.094 2.668 ± 0.842 1.170 ± 0.843
BI-24 ± 0.12 5 MWhigh 0.258 ± 0.119 3.311 ± 1.069 1.823 ± 1.047
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A.4 Combination of Parameters

The remaining panels in Figures A.5 and A.6 present the combined effect of proper

motion uncertainties and Milky Way potential models on the inferred stability of the

plane of satellites. These panels also follow a similar trend as observed in Section

4.4. In these cases, an increase in θtan is associated with an increased µc/a in all

scenarios. Similarly, Figures A.7 and A.8 presents combined affect of proper motion

errors, distance errors and different Milky Way potential models, see Table A.1 and

Table A.2..
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Figure A.6: This figure presents results for θtan= 60°, and illustrates the µc/a for
forward integrations, shown as dotted-dash lines, alongside µc/a for backward inte-
gration under three Milky Way models, characterized by halo mass. The blue, green,
and red dashed lines represent the µc/a under MWless, MWfiducial, and MWhigh po-
tential models, respectively.
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Figure A.7: This figure presents results for θtan= 40°. This figure contains four
panels is similar to A.5 but now has distance errors of 5% in all panels. Each panels
highlights the affects of different proper motion uncertainties. Furthermore, each
panel sheds light on how varying Milky Way potential models — MWless, MWfiducial,
and MWhigh — influence the flattening of the plane.
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Figure A.8: This figure presents results for θtan= 60°. This figure contains four
panels is similar to A.6 but now has distance errors of 5% in all panels. Each panels
highlights the affects of different proper motion uncertainties. Furthermore, each
panel sheds light on how varying Milky Way potential models — MWless, MWfiducial,
and MWhigh — influence the flattening of the plane.
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A.5 Individual Axes

Figures A.9 and A.10 illustrate the impact of proper motion uncertainties and var-

ious Milky Way potential models on the individual extent of the plane axis under

θtan= 40°and 60°, respectively. In contrast, Figures A.11 and A.12 present similar

analyses, but in these cases, a 5% distance error is also factored in. From the Figures

it can be seen that with an increase of θtan, the extent of individual axes increases

more with during the backward integrations.
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Figure A.9: This figure presents results for θtan= 40°and shows the comparative
analysis of galactic orbital axes under varying proper motion uncertainties and Milky
Way Models. This figure illustrates the mean values of 600 major, minor, and
intermediate axes calculated through backward integration. The rows indicate the
varying levels of proper motion uncertainty, while each column corresponds to one
of the three axes: major (first column), intermediate (second column), and minor
(third column). The influence of different Milky Way models is denoted by distinct
colors as per the legend, allowing for a clear comparison of their impacts on the
galactic orbital axes over time.
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Figure A.10: This figure presents results for θtan= 60°and shows the comparative
analysis of galactic orbital axes under varying proper motion uncertainties and Milky
Way Models. This figure illustrates the mean values of 600 major, minor, and
intermediate axes calculated through backward integration. The rows indicate the
varying levels of proper motion uncertainty, while each column corresponds to one
of the three axes: major (first column), intermediate (second column), and minor
(third column). The influence of different Milky Way models is denoted by distinct
colors as per the legend, allowing for a clear comparison of their impacts on the
galactic orbital axes over time

A.6 Escaping Test Satellites

Figures A.13 and A.14 display the number of test satellites that exceeded the 300 kpc

radius threshold under θtan = 40°and 60°, respectively. The effect of proper motion

errors is depicted in each of the four panels, with each line within a panel representing

the influence of different Milky Way potential models. While, figure A.15 and A.16

show similar output but in these Figures there is an additional parameter, distance

errors. From Table A.1, Table A.2 and Table 4.1, it is clear that higher eccentricities

cause more satellites to escape 300 kpc range.

Figure A.17 and A.18 shows the ∆c/a and fc/a, respectively, at 3 Gyrs as a func-

tion of proper motion uncertainties. The figure is arranged row-wise to demonstrate

the varying effects of different Milky Way potentials. Column-wise, the plot elu-

cidates the impacts of distance uncertainties. Each panel contains three distinct

lines, representing the eccentricities of the satellite system. All panels clearly show

the effect of proper motion uncertainties on the ∆c/a and fc/a — in other words,
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Figure A.11: This figure presents results for θtan= 40°and shows the comparative
analysis of galactic orbital axes under varying proper motion uncertainties, distance
uncertainties and Milky Way Models. This figure illustrates the mean values of 600
major, minor, and intermediate axes calculated through backward integration. The
rows indicate the varying levels of proper motion uncertainty, while each column
corresponds to one of the three axes: major (first column), intermediate (second
column), and minor (third column). The influence of different Milky Way models
is denoted by distinct colors as per the legend. Each panel accounts 5% distance
uncertainties

proper motion uncertainties widen the plane of the satellite. The figure exhibits a

linear behavior, indicating that higher proper motion uncertainties lead to increased

system instability. Each panel also reveals the influence of the eccentricities of test

satellites. In all panels, more eccentric orbits further widen the µc/a of the plane.

Additionally, the different potential models influence the plane, though at higher

proper motions, the effect of potential becomes less significant. Across all plots,

the effects of proper motion uncertainties and the eccentricities of orbits remain

consistent.
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Figure A.12: This figure presents results for θtan= 60°and shows the comparative
analysis of galactic orbital axes under varying proper motion uncertainties, distance
uncertainties and Milky Way Models. This figure illustrates the mean values of 600
major, minor, and intermediate axes calculated through backward integration. The
rows indicate the varying levels of proper motion uncertainty, while each column
corresponds to one of the three axes: major (first column), intermediate (second
column), and minor (third column). The influence of different Milky Way models
is denoted by distinct colors as per the legend. Each panel accounts 5% distance
uncertainties
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Figure A.13: This figure presents results for θtan= 40°and shows the average number
of test satellites surpassing the 300 kpc distance from the galactic center in various
Milky Way potential models, highlighting the impact of proper motion uncertainties
on satellite dynamics.
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Figure A.14: This figure presents results for θtan= 60°and shows the average number
of test satellites surpassing the 300 kpc distance from the galactic center in various
Milky Way potential models, highlighting the impact of proper motion uncertainties
on satellite dynamics.
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Figure A.15: This figure presents results for θtan= 40°and shows the average number
of test satellites surpassing the 300 kpc distance from the galactic center in various
Milky Way potential models, highlighting the impact of proper motion uncertainties
and distance measurement inaccuracies on satellite dynamics.
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Figure A.16: This figure presents results for θtan= 60°and shows the average number
of test satellites surpassing the 300 kpc distance from the galactic center in various
Milky Way potential models, highlighting the impact of proper motion uncertainties
and distance measurement inaccuracies on satellite dynamics.
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Figure A.17: Figure illustrating ∆c/a as a function of proper motion uncertainties
at 3 Gyr in backward integration. Row-wise, the figure demonstrates the effect of
different Milky Way potentials, while column-wise, it shows the impact of distance
uncertainties. Within each panel, three lines representing θtan and the eccentricities
of the satellite system are shown.
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Figure A.18: Figure illustrating fc/a as a function of proper motion uncertainties
at 3 Gyr in backward integration. Row-wise, the figure demonstrates the effect of
different Milky Way potentials, while column-wise, it shows the impact of distance
uncertainties. Within each panel, three lines representing θtan and the eccentricities
of the satellite system are shown.
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Table A.3: R-square values for Different Potential Models.

Potential Model ϵdist [%] θtan [°] R2
∆c/a

R2
fc/a

MWfiducial 0 40 0.9829 0.9829
MWless 0 40 0.9796 0.9796
MWhigh 0 40 0.9762 0.9762
MWfiducial 0 60 0.9944 0.9944
MWless 0 60 0.9835 0.9835
MWhigh 0 60 0.9904 0.9904
MWfiducial 0 80 0.9956 0.9956
MWless 0 80 0.9782 0.9782
MWhigh 0 80 0.9811 0.9811
MWfiducial 5 40 0.9877 0.9877
MWless 5 40 0.9665 0.9665
MWhigh 5 40 0.9823 0.9823
MWfiducial 5 60 0.9916 0.9916
MWless 5 60 0.9710 0.9710
MWhigh 5 60 0.9918 0.9918
MWfiducial 5 80 0.9943 0.9943
MWless 5 80 0.9815 0.9815
MWhigh 5 80 0.9844 0.9844
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List of Figures

1.1 The ALMA antennae are illuminated by a red glow, while the back-

ground includes the southern Milky Way to the left and the Magel-

lanic Clouds at the top. Image source: European Southern Observatory 2

1.2 The arrangement of galaxies obtained through spectroscopic redshift

surveys and mock catalogues generated from cosmological simulations

(Springel et al., 2006). . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 These figures display the edge-on views of the Milky Way and An-

dromeda galaxy’s satellite planes. The left panel showcases the VPOS

of the Milky Way as seen from a vantage point where both the galaxy

and the plane of satellite are in an edge-on orientation. The right

panel illustrates the GPoA surrounding Andromeda as seen from the

Sun. The best fit for the satellite galaxy planes is represented by

dashed lines, with the width of these planes depicted by dotted lines.

The line-of-sight velocities of the satellites are indicated with blue

downward triangles for approaching satellites and red upward trian-

gles for receding satellites that are part of the plane. Open triangles

represent satellites that are not part of the plane, while crosses are the

satellites fainter than the classical satellites. The shaded areas high-

light regions with significant observational limitations (Pawlowski,

2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Centaurus A satellite plane (CASP) observation in edge-on view shows

the best fit of the satellite galaxy plane as a dashed line with its width

as a dotted line. Satellite velocities are represented as blue down-

ward triangles for approaching and red upward triangles for receding

satellites in the plane, while crosses mark satellites with unavailable

velocities. Shaded areas indicate areas with significant observational

limitations (Pawlowski, 2018). . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Illustrations of three possibilities for the formation of satellite galaxy

planes. On the left, accretion of dwarf galaxies from filaments onto

the central galaxy’s halo. In the middle, dwarf galaxies accreted in

groups. On the right, second-generation tidal dwarf galaxies formed

from the tails of interacting galaxies (Pawlowski, 2018). . . . . . . . . 11
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2.1 Two images showing the Galactic coordinate frame system. On the

left, Galactic latitude (b) is shown, measured from the Galactic equa-

tor to the Galactic poles. The North Galactic Pole is at b = 90°, and
the South Galactic Pole is at b = -90°. While, the right panel illus-

trates the Galactic longitude (l) that goes from 0°to 360°, measured

eastward around the equator in degrees. In both of these panels, the

reference point is the Sun. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Galactocentric coordinate frame system with Galactic Center (GC) as

the reference point. Sun lies at R⊙ distance away from the center. To

locate any object in this system, R, distance from GC, z, height above

midplane, ϕ, azimuthal angle are used. Whereas, r is Galactocentric

distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Normalized composite rotation curve of Milky Way and its compo-

nents (bulge, disk, and halo contributions). . . . . . . . . . . . . . . 20

2.4 Example of plane fitting over N random points in space. Left: Edge-

on view. Right: Face-on view. . . . . . . . . . . . . . . . . . . . . . . 22

2.5 The evolution of the proper motion of the 11 classical satellites of

the Milky Way over time is depicted. Different symbols indicate the

mode of data acquisition, whether through ground-based observations

(Ground), observations from the Hubble Space Telescope (HST), data

from Gaia DR2 (Gaia), or via the stellar redshift gradient method

(SRG). With updated data, proper motion uncertainties are contin-

uously decreasing (Pawlowski and Kroupa, 2020). . . . . . . . . . . . 23

3.1 A graphical comparison of the radial distance distributions of satellite

galaxies, contrasting simulated test satellites in our model with ob-

served data. Figure Presents the Cumulative Distribution Function

(CDF) for these two datasets. . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Face-on (left) and Edge-on (right) views of Nsat = 25 randomly gen-

erated test satellite points represented by different colors. Here, star

symbol represents the host galaxy. . . . . . . . . . . . . . . . . . . . . 28

3.3 3D plot of all Nsat = 25 randomly generated test satellites. For each

satellite, radial, perpendicular and tangential velocity component is

shown by red, green and blue color respectively. Where, host galaxy

is represented by black star symbol at origin. . . . . . . . . . . . . . . 29

3.4 Rotational curves of the Milky Way for three different potential mod-

els: MWfiducial (blue), MWless (orange), and MWhigh (green) as a

function of radial distance (R) in kiloparsecs. . . . . . . . . . . . . . . 33

3.5 Comparison of eccentricity, (e), distributions across different θ: The

figure presents the eccentricity CDF for three different θtan: 40°, 60°,
and 80°from left to right, respectively. The predominant black his-

togram in each panel signifies observed data from (Li et al., 2021),

while the overlaid colored CDF represent simulated results for Nsat

test satellites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.6 Plots showing the mean c/a of Nrealization forward integration. Right:

forward integration when θ = 40°, center: forward integration when

θ = 60°, right: forward integration when θ = 80°. . . . . . . . . . . . 34

3.7 This figure illustrates the evolution of the cumulative distribution

function (CDF) of radial distances. The red line represents the ini-

tial CDF of radial distances for random test satellites. The other

three lines show the CDFs of the mean radial distance at 5 Gyr, each

corresponding to a different θtan. . . . . . . . . . . . . . . . . . . . . . 35

4.1 Four panels illustrating the influence of proper motion uncertainties

on the plane of satellite galaxies. Each panel shows forward (black

dashed lines) and backward (green dashed lines) integrations, also in-

dicated by arrows. The uncertainties in proper motions are as follows:

0.00 masyr−1 in the upper left panel, 0.04 masyr−1 in the upper right

panel, 0.08 masyr−1 in the lower left panel, and 0.12 masyr−1 in the

lower right panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Two figures illustrate ∆c/a as a function of proper motion errors un-

der MWfiducial. Within each figure, the effect of eccentricities is repre-

sented by lines with error bars. The left figure represents Model BI-01

to BI-04, and the right figure represents Model BI-013 to BI0-16, as

detailed in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Two figures illustrate fc/a as a function of proper motion errors un-

der MWfiducial. Within each figure, the effect of eccentricities is repre-

sented by lines with error bars. The left figure represents Model BI-01

to BI-04, and the right figure represents Model BI-013 to BI0-16, as

detailed in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 The figure illustrates the impact of distance uncertainties on the or-

bital plane stability of satellite galaxies. The forward integration is

represented by a dotted-dashed black line. In the case of 0% distance

uncertainty, the backward integration closely follows the forward in-

tegration, shown in blue. However, with 5% distance uncertainty, the

backward integration, depicted in green, shows a noticeable diver-

gence in µc/a compared to the forward integration. . . . . . . . . . . . 42

4.5 This figure illustrates the µc/a for forward integrations, shown as

dotted-dash lines, alongside µc/a for backward integration under three

Milky Way models, characterized by halo mass. The blue, green, and

red dashed lines represent the µc/a under MWless, MWfiducial, and

MWhigh potential models, respectively. . . . . . . . . . . . . . . . . . 43

4.6 This figure comprises four panels, each highlighting the effect of proper

motion uncertainties, ranging from 0.00 to 0.12 masyr−1, on the evo-

lution of µc/a. Each panel also demonstrates the influence of us-

ing different Milky Way potential models — MWless, MWfiducial, and

MWhigh — on the plane’s flattening. . . . . . . . . . . . . . . . . . . 44
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4.7 This figure is akin to Figure 4.6, but it now includes distance un-

certainties. It consists of four panels, each highlighting the effects

of different proper motion uncertainties, ranging from 0.00 to 0.12

masyr−1, on the evolution of µc/a. Furthermore, each panel sheds light

on how varying Milky Way potential models — MWless, MWfiducial,

and MWhigh — influence the flattening of the plane. . . . . . . . . . . 45

4.8 Figure shows the comparative analysis of galactic orbital axes under

Varying proper motion uncertainties and Milky Way Models. This

figure illustrates the mean values of 600 major, minor, and interme-

diate axes calculated through backward integration. It is organized

into 12 panels, each representing a different combination of proper

motion uncertainty (ranging from 0.00 to 0.12 masyr−1) and Milky

Way model. The rows indicate the varying levels of proper motion

uncertainty, while each column corresponds to one of the three axes:

major (first column), intermediate (second column), and minor (third

column). The influence of different Milky Way models is denoted by

distinct colors as per the legend, allowing for a clear comparison of

their impacts on the galactic orbital axes over time. . . . . . . . . . 46

4.9 Similar comparative analysis of galactic orbital axes under as shown

in 4.8. This figure illustrates the mean values of 600 major, minor,

and intermediate axes calculated through backward integration under

distance uncertainties. It is organized into 12 panels, each represent-

ing a different combination of proper motion uncertainty (ranging

from 0.00 to 0.12 masyr−1) and Milky Way model. The rows indicate

the varying levels of proper motion uncertainty, while each column

corresponds to one of the three axes: major (first column), inter-

mediate (second column), and minor (third column). The influence

of different Milky Way models is denoted by distinct colors as per

the legend, allowing for a clear comparison of their impacts on the

galactic orbital axes over time. . . . . . . . . . . . . . . . . . . . . . 47

4.10 This figure presents the average number of test satellites surpassing a

300 kpc distance from the galactic center in various Milky Way poten-

tial models, highlighting the impact of proper motion uncertainties

inaccuracies on satellite dynamics. . . . . . . . . . . . . . . . . . . . . 49

4.11 This figure presents the average number of test satellites surpassing a

300 kpc distance from the galactic center in various Milky Way poten-

tial models, highlighting the impact of proper motion uncertainties

and distance measurement inaccuracies on satellite dynamics. . . . . 50

A.1 Four panels illustrating the influence of proper motion uncertainties

on the plane of satellite galaxies. This case represents θtan= 40°. Each
panel shows amount of proper motion errors considered. . . . . . . . . 65
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A.2 Four panels illustrating the influence of proper motion uncertainties

on the plane of satellite galaxies. This case represents θtan= 60°. Each
panel shows amount of proper motion error considered. . . . . . . . . 66

A.3 This figure presents results for θtan= 40°. The figure illustrates the

impact of distance uncertainties on the orbital plane stability of satel-

lite galaxies. Forward integration is represented by a dotted-dashed

black line, while backward integration is depicted with a blue and

green dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 This figure presents results for θtan= 60°. The figure illustrates the

impact of distance uncertainties on the orbital plane stability of satel-

lite galaxies. Forward integration is represented by a dotted-dashed

black line, while backward integration is depicted with a blue and

green dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.5 This figure presents results for θtan= 40°, and illustrates the µc/a for

forward integrations, shown as dotted-dash lines, alongside µc/a for

backward integration under three Milky Way models, characterized

by halo mass. The blue, green, and red dashed lines represent the µc/a

under MWless, MWfiducial, and MWhigh potential models, respectively. 67

A.6 This figure presents results for θtan= 60°, and illustrates the µc/a for

forward integrations, shown as dotted-dash lines, alongside µc/a for

backward integration under three Milky Way models, characterized

by halo mass. The blue, green, and red dashed lines represent the µc/a

under MWless, MWfiducial, and MWhigh potential models, respectively. 69

A.7 This figure presents results for θtan= 40°. This figure contains four

panels is similar to A.5 but now has distance errors of 5% in all

panels. Each panels highlights the affects of different proper motion

uncertainties. Furthermore, each panel sheds light on how varying

Milky Way potential models — MWless, MWfiducial, and MWhigh —

influence the flattening of the plane. . . . . . . . . . . . . . . . . . . . 70

A.8 This figure presents results for θtan= 60°. This figure contains four

panels is similar to A.6 but now has distance errors of 5% in all

panels. Each panels highlights the affects of different proper motion

uncertainties. Furthermore, each panel sheds light on how varying

Milky Way potential models — MWless, MWfiducial, and MWhigh —

influence the flattening of the plane. . . . . . . . . . . . . . . . . . . . 70
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A.9 This figure presents results for θtan= 40°and shows the comparative

analysis of galactic orbital axes under varying proper motion uncer-

tainties and Milky Way Models. This figure illustrates the mean

values of 600 major, minor, and intermediate axes calculated through

backward integration. The rows indicate the varying levels of proper

motion uncertainty, while each column corresponds to one of the three

axes: major (first column), intermediate (second column), and mi-

nor (third column). The influence of different Milky Way models

is denoted by distinct colors as per the legend, allowing for a clear

comparison of their impacts on the galactic orbital axes over time. . 71

A.10 This figure presents results for θtan= 60°and shows the comparative

analysis of galactic orbital axes under varying proper motion uncer-

tainties and Milky Way Models. This figure illustrates the mean

values of 600 major, minor, and intermediate axes calculated through

backward integration. The rows indicate the varying levels of proper

motion uncertainty, while each column corresponds to one of the three

axes: major (first column), intermediate (second column), and mi-

nor (third column). The influence of different Milky Way models

is denoted by distinct colors as per the legend, allowing for a clear

comparison of their impacts on the galactic orbital axes over time . . 72

A.11 This figure presents results for θtan= 40°and shows the comparative

analysis of galactic orbital axes under varying proper motion uncer-

tainties, distance uncertainties and Milky Way Models. This figure

illustrates the mean values of 600 major, minor, and intermediate

axes calculated through backward integration. The rows indicate the

varying levels of proper motion uncertainty, while each column cor-

responds to one of the three axes: major (first column), intermediate

(second column), and minor (third column). The influence of differ-

ent Milky Way models is denoted by distinct colors as per the legend.

Each panel accounts 5% distance uncertainties . . . . . . . . . . . . . 73

A.12 This figure presents results for θtan= 60°and shows the comparative

analysis of galactic orbital axes under varying proper motion uncer-

tainties, distance uncertainties and Milky Way Models. This figure

illustrates the mean values of 600 major, minor, and intermediate

axes calculated through backward integration. The rows indicate the

varying levels of proper motion uncertainty, while each column cor-

responds to one of the three axes: major (first column), intermediate

(second column), and minor (third column). The influence of differ-

ent Milky Way models is denoted by distinct colors as per the legend.

Each panel accounts 5% distance uncertainties . . . . . . . . . . . . . 74

A.13 This figure presents results for θtan= 40°and shows the average num-

ber of test satellites surpassing the 300 kpc distance from the galactic

center in various Milky Way potential models, highlighting the impact

of proper motion uncertainties on satellite dynamics. . . . . . . . . . 75
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A.14 This figure presents results for θtan= 60°and shows the average num-

ber of test satellites surpassing the 300 kpc distance from the galactic

center in various Milky Way potential models, highlighting the impact

of proper motion uncertainties on satellite dynamics. . . . . . . . . . 75

A.15 This figure presents results for θtan= 40°and shows the average num-

ber of test satellites surpassing the 300 kpc distance from the galactic

center in various Milky Way potential models, highlighting the impact

of proper motion uncertainties and distance measurement inaccura-

cies on satellite dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 76

A.16 This figure presents results for θtan= 60°and shows the average num-

ber of test satellites surpassing the 300 kpc distance from the galactic

center in various Milky Way potential models, highlighting the impact

of proper motion uncertainties and distance measurement inaccura-

cies on satellite dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 76

A.17 Figure illustrating ∆c/a as a function of proper motion uncertainties

at 3 Gyr in backward integration. Row-wise, the figure demonstrates

the effect of different Milky Way potentials, while column-wise, it

shows the impact of distance uncertainties. Within each panel, three

lines representing θtan and the eccentricities of the satellite system are

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.18 Figure illustrating fc/a as a function of proper motion uncertainties

at 3 Gyr in backward integration. Row-wise, the figure demonstrates

the effect of different Milky Way potentials, while column-wise, it

shows the impact of distance uncertainties. Within each panel, three

lines representing θtan and the eccentricities of the satellite system are

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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